Presentation is loading. Please wait.

Presentation is loading. Please wait.

Domain, Range, Vertical Asymptotes and Horizontal Asymptotes

Similar presentations


Presentation on theme: "Domain, Range, Vertical Asymptotes and Horizontal Asymptotes"β€” Presentation transcript:

1 Domain, Range, Vertical Asymptotes and Horizontal Asymptotes
Rational Functions Domain, Range, Vertical Asymptotes and Horizontal Asymptotes

2 What is a rational function?
Definition: A function of the form 𝑓(π‘₯) 𝑔(π‘₯) , where 𝑓(π‘₯) and 𝑔(π‘₯) are polynomials and 𝑔(π‘₯) is not the zero polynomial. 𝑓(π‘₯) 𝑔(π‘₯) ;π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑔(π‘₯)β‰ 0 What is the most common form of the equation? 𝑓 π‘₯ = 1 π‘₯

3 What does it look like? Domain:(βˆ’βˆž,0)βˆͺ(0,∞) Range:(βˆ’βˆž,0)βˆͺ(0,∞) X Y -3
βˆ’ 1 3 -2 βˆ’ 1 2 -1 ----- 1 2 1 2 3 1 3 Domain:(βˆ’βˆž,0)βˆͺ(0,∞) Range:(βˆ’βˆž,0)βˆͺ(0,∞)

4 Asymptotes Definition:
Horizontal: The line 𝑦=𝑏 is a horizontal asymptote of the graph of a function f if lim π‘₯β†’βˆ’βˆž 𝑓 π‘₯ =𝑏 or lim π‘₯β†’βˆž 𝑓 π‘₯ =𝑏 Vertical: The line π‘₯=π‘Ž is a vertical asymptote of the graph of the function f if lim π‘₯β†’ π‘Ž + 𝑓 π‘₯ =±∞ or lim π‘₯β†’ π‘Ž βˆ’ 𝑓 π‘₯ =±∞

5 What do Asymptotes look like?
Horizontal: π’š=πŸ’ Vertical: 𝒙=𝟐

6 Finding Asymptotes Vertical Horizontal
lim π‘₯β†’ π‘Ž + 𝑓 π‘₯ =±∞ or lim π‘₯β†’ π‘Ž βˆ’ 𝑓 π‘₯ =±∞ Where do they come from? Vertical asymptotes go through what axis? The X-Axis Thus, we are looking for discontinuities or values that x can’t be. In rational equations: 𝑓 π‘₯ = 1 π‘₯ ;π‘₯β‰ 0, as π‘₯ is in the denominator. Thus, we are going to set the values of the denominator >0 and solve for π‘₯. The asymptote is x=0. lim π‘₯β†’βˆ’βˆž 𝑓 π‘₯ =𝑏 or lim π‘₯β†’βˆž 𝑓 π‘₯ =𝑏 Where do they come from? Horizontal asymptotes go through what axis? The Y-Axis Like radical equations, our horizontal asymptote changes when a value is being added or subtracted to the outside of the fraction. In rational equations: 𝑓 π‘₯ = 1 π‘₯ βˆ’2 The asymptote that was 𝑦=0 is now 𝑦=βˆ’2.

7 Horizontal Asymptotes
𝑓 π‘₯ = π‘Ž π‘₯ 𝑛 𝑏 π‘₯ π‘š Cases: If 𝑛<π‘š then 𝑦=0 If 𝑛=π‘š, then 𝑦= π‘Ž 𝑏 If 𝑛>π‘š then there is no H.A.

8 Where are the asymptotes for the graph 𝑓 π‘₯ = 1 π‘₯ ?
Horizontal: π’š=𝟎 Vertical: 𝒙=𝟎

9 Domain and Range: βˆ’βˆž,__ βˆͺ(__ ,∞)
Domain: x-values Range: y-values Restrictions: Since the denominator can never equal zero. We must look at all values of x that would cause that to happen. Example: 𝑦= 1 π‘₯βˆ’3 ;π‘₯βˆ’3=0β†’π‘₯β‰ 3 Domain: βˆ’βˆž,3 βˆͺ(3,∞) The missing value occurs at horizontal asymptote of the graph. The original asymptote is at 𝑦=0. Thus, we are looking at any vertical shifts that occur in the graph. Example: 𝑦= 1 π‘₯ βˆ’2 Range: βˆ’βˆž,βˆ’2 βˆͺ(βˆ’2,∞)

10 Graphs 𝑦= 1 π‘₯βˆ’3 𝑦= 1 π‘₯ βˆ’2 Asymptotes: π‘₯=3 π‘Žπ‘›π‘‘ 𝑦=0 Asymptotes:
π‘₯=0 π‘Žπ‘›π‘‘ 𝑦=βˆ’2

11 Examples 𝑦= π‘₯βˆ’5 π‘₯βˆ’3 𝑦= π‘₯ 2 βˆ’9 π‘₯ 2 βˆ’4 Vertical Asymptote:
𝑦= π‘₯ 2 βˆ’9 π‘₯ 2 βˆ’4 Vertical Asymptote: π‘₯βˆ’3=0β†’π‘₯β‰ 3 π‘₯=3 is the asymptote. Horizontal Asymptote: The degree of x in the numerator is the same as the degree of x in the denominator, so: 1π‘₯ 1π‘₯ β†’1 Domain: (βˆ’βˆž,3)βˆͺ(3,∞) Range: (βˆ’βˆž,1)βˆͺ(1,∞) Vertical Asymptote: π‘₯ 2 βˆ’4=0β†’ π‘₯ 2 =4β†’π‘₯=Β±2 π‘₯=2 π‘Žπ‘›π‘‘ π‘₯=βˆ’2 are the asymptotes. Horizontal Asymptote: The degree of x in the numerator is the same as the degree of x in the denominator, so: 1 π‘₯ 2 1 π‘₯ 2 β†’1 Domain: (βˆ’βˆž,βˆ’2)βˆͺ βˆ’2, 2 βˆͺ(2,∞) Range: (βˆ’βˆž,1)βˆͺ(1,∞)

12 Example #1 Graph 𝑦= 2π‘₯+5 π‘₯βˆ’1 Vertical Asymptote:
π‘₯βˆ’1=0β†’π‘₯β‰ 1 π‘₯=1 is the asymptote. Horizontal Asymptote: 𝑛=π‘š so y= π‘Ž 𝑏 𝑦= 2 1 β†’2 so 𝑦=2 is the asymptote. Domain: (βˆ’βˆž,1)βˆͺ(1,∞) Range: (βˆ’βˆž,2)βˆͺ(2,∞)

13 Example #2 Graph 𝑦= 3π‘₯βˆ’1 π‘₯ 2 +4π‘₯βˆ’21 Vertical Asymptote:
𝑦= 3π‘₯βˆ’1 π‘₯ 2 +4π‘₯βˆ’21 Graph Vertical Asymptote: π‘₯ 2 +4π‘₯βˆ’21β†’ π‘₯+7 π‘₯βˆ’3 β†’π‘₯β‰ βˆ’7 and π‘₯β‰ 3 So, π‘₯=βˆ’7 and π‘₯=3 are the asymptotes. Horizontal Asymptote: 𝑛<π‘š The degree in the numerator is less than the degree in the denominator so 𝑦=0. Domain: (βˆ’βˆž,βˆ’7)βˆͺ(βˆ’7, 3)βˆͺ(3,∞) Range: (βˆ’βˆž,0)βˆͺ(0,∞)

14 Example #3 Graph 𝑦= π‘₯ 3 βˆ’8 π‘₯ 2 +5π‘₯+6 Vertical Asymptote:
𝑦= π‘₯ 3 βˆ’8 π‘₯ 2 +5π‘₯+6 Vertical Asymptote: π‘₯ 2 +5π‘₯βˆ’6β†’ π‘₯+3 π‘₯+2 β†’π‘₯β‰ βˆ’3 and π‘₯β‰ βˆ’2 So, π‘₯=βˆ’3 and π‘₯=βˆ’2 are the asymptotes. Horizontal Asymptote: 𝑛>π‘š so there is no H.A. Domain: (βˆ’βˆž,βˆ’3)βˆͺ βˆ’3, βˆ’2 βˆͺ(βˆ’2,∞) Range: (βˆ’βˆž,∞)

15 Hole Definition: HolesΒ in the graph of a rational function are generally produced byΒ factors that are common to both the numerator and the denominator!Β  Example: 𝑓 π‘₯ = π‘₯ 2 (π‘₯βˆ’2) π‘₯βˆ’2 𝑓 π‘₯ = π‘₯ 2 (π‘₯βˆ’2) π‘₯βˆ’2 →𝑓 π‘₯ = π‘₯ 2 π‘₯βˆ’2=0β†’π‘₯=2 Thus, there is a hole at π‘₯=2.

16 Example #4 𝑦= π‘₯+2 π‘₯ 2 βˆ’π‘₯βˆ’6 Continued… Domain: Range:
𝑦= π‘₯+2 π‘₯ 2 βˆ’π‘₯βˆ’6 Continued… Vertical Asymptote: π‘₯ 2 βˆ’π‘₯βˆ’6β†’ π‘₯βˆ’3 π‘₯+2 However, π‘₯+2 is the numerator so it cancels and a hole in the graph occurs. S0, π‘₯=3 is the only V.A. Horizontal Asymptote: 𝑛<π‘š so 𝑦=0. Also, because there is a hole we must find the y-coordinates of the hole. 𝑦=0 is the asymptote. Domain: (βˆ’βˆž,βˆ’3)βˆͺ(βˆ’3,∞) Range: (βˆ’βˆž,0)βˆͺ(0,∞)

17 Graph π’š=𝟎 𝒙=πŸ‘ 𝑦= π‘₯+2 π‘₯ 2 βˆ’π‘₯βˆ’6


Download ppt "Domain, Range, Vertical Asymptotes and Horizontal Asymptotes"

Similar presentations


Ads by Google