Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 29, 2010 MOS Transistors.

Similar presentations


Presentation on theme: "Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 29, 2010 MOS Transistors."— Presentation transcript:

1 Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 29, 2010 MOS Transistors Details

2 Last Time Focused on I vs V relationships –Effective resistance –Drive Penn ESE370 Fall2010 -- DeHon 2

3 Today Capacitance –Gate –Source/Drain Contact More threshold dependence –V DS Penn ESE370 Fall2010 -- DeHon 3

4 Theme Refining model –Exploring next level of complexity Penn ESE370 Fall2010 -- DeHon 4

5 channel gate srcdrain Capacitance First order: looks like a capacitor Today: –Like resistance, it is not constant –Capacitance not just to src (drain) Penn ESE370 Fall2010 -- DeHon 5

6 Threshold Threshold decreases with V DS Penn ESE370 Fall2010 -- DeHon 6 VTVT V DS

7 Capacitance Setup Penn ESE370 Fall2010 -- DeHon 7

8 Capacitance Argued looked like a capacitor to the channel …but the channel isnt really one of our terminals –Dont connect directly to it. Penn ESE370 Fall2010 -- DeHon 8

9 Capacitance Four Terminals How many combinations –4 things taken 2 at a time Penn ESE370 Fall2010 -- DeHon 9

10 Capacitances GS, GB, GD, SB, DB, SD Penn ESE370 Fall2010 -- DeHon 10

11 Moving Plates? What is distance from gate to conductor? –Depletion? –Strong Inversion? Penn ESE370 Fall2010 -- DeHon 11

12 Capacitance Decomposition Penn ESE370 Fall2010 -- DeHon 12

13 Overlap What is the capacitive implication of gate/src and gate/drain overlap? Penn ESE370 Fall2010 -- DeHon 13

14 Overlap Length of overlap? Penn ESE370 Fall2010 -- DeHon 14

15 Overlap Capacitance Penn ESE370 Fall2010 -- DeHon 15

16 Overlap Capacitance Penn ESE370 Fall2010 -- DeHon 16

17 Capacitance in Strong Inversion (easy case) Looks like parallel plate Gate – Channel –What is C GC ? –What is C GB ? Penn ESE370 Fall2010 -- DeHon 17

18 Capacitance in Strong Inversion Looks like parallel plate Gate – Channel –What is C GC ? –C GB =0 Penn ESE370 Fall2010 -- DeHon 18

19 Capacitance in Strong Inversion But channel isnt a terminal –Split evenly with source and drain Penn ESE370 Fall2010 -- DeHon 19

20 Capacitance in Strong Inversion Add in Overlap capacitance Penn ESE370 Fall2010 -- DeHon 20

21 Capacitance Subthreshold Need to refine model –What showed on Day 9 not quite right Channel doesnt start depleted –Starts with substrate doping Penn ESE370 Fall2010 -- DeHon 21

22 Channel Evolution Subthreshold Penn ESE370 Fall2010 -- DeHon 22

23 Capacitance Depletion What happens to capacitance here? –Capacitor plate distance? Penn ESE370 Fall2010 -- DeHon 23

24 Capacitance Depletion Capacitance becomes Gate-Body Capacitance drops Penn ESE370 Fall2010 -- DeHon 24

25 Capacitance vs V GS Penn ESE370 Fall2010 -- DeHon 25 G C GC C GCS = C GCD C GCB

26 Saturation Capacitance? Penn ESE370 Fall2010 -- DeHon 26

27 Saturation Capacitance? Penn ESE370 Fall2010 -- DeHon 27 Source end of channel in inversion Destination end of channel close at threshold Capacitance shifts to source –Total capacitance reduced

28 Saturation Capacitance Penn ESE370 Fall2010 -- DeHon 28 C GC C GCS C GCD V DS /(V GS -V T )

29 Contact Capacitance Penn ESE370 Fall2010 -- DeHon 29

30 Contact Capacitance n + contacts are formed by doping = diffusion Depletion under contact –Contact-Body capacitance Depletion around perimeter of contact –Also contact-Body capacitance Penn ESE370 Fall2010 -- DeHon 30

31 Contact/Diffusion Capacitance C j – diffusion depletion C jsw – sidewall capacitance L S – length of diffusion Penn ESE370 Fall2010 -- DeHon 31 LSLS

32 Capacitance Roundup C GS =C GCS +C O C GD =C GCD +C O C GB =C GCB C SB =C diff C DB =C diff Penn ESE370 Fall2010 -- DeHon 32

33 One Implication Penn ESE370 Fall2010 -- DeHon 33

34 Step Response? Penn ESE370 Fall2010 -- DeHon 34 R small R large

35 Step Response Penn ESE370 Fall2010 -- DeHon 35

36 Impact of C GD What does CGD do to the switching response here? Penn ESE370 Fall2010 -- DeHon 36

37 Impact of C GD Penn ESE370 Fall2010 -- DeHon 37

38 Threshold Penn ESE370 Fall2010 -- DeHon 38

39 Threshold Describe V T as a constant Induce enough electron collection to invert channel Penn ESE370 Fall2010 -- DeHon 39

40 V DS impact In practice, V DS impacts state of channel Penn ESE370 Fall2010 -- DeHon 40

41 V DS impact Increasing V DS, already depletes portions of channel Penn ESE370 Fall2010 -- DeHon 41

42 V DS impact Increasing V DS, already depletes portions of channel Need less charge, less voltage to invert Penn ESE370 Fall2010 -- DeHon 42

43 Drain-Induced Barrier Lowering (DIBL) Penn ESE370 Fall2010 -- DeHon 43 VTVT V DS

44 DIBL Impact Penn ESE370 Fall2010 -- DeHon 44

45 In a Gate? What does it impact most? –Which device, which state/operation? Penn ESE370 Fall2010 -- DeHon 45

46 In a Gate V DS largest for off device –Easier to turn on Penn ESE370 Fall2010 -- DeHon 46

47 In a Gate V DS largest for off device –Easier to turn on –Leak more Penn ESE370 Fall2010 -- DeHon 47

48 In a Gate V DS largest for off device –Easier to turn on –Leak more Penn ESE370 Fall2010 -- DeHon 48

49 Admin HW3 due Friday Penn ESE370 Fall2010 -- DeHon 49

50 Ideas Capacitance –To every terminal –Voltage dependent Threshold –Voltage dependent Generally do manual analysis without Penn ESE370 Fall2010 -- DeHon 50 VTVT V DS C GC C GCS C GCB


Download ppt "Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 29, 2010 MOS Transistors."

Similar presentations


Ads by Google