Download presentation
Presentation is loading. Please wait.
1
5.5 Multiple Angle & Product-to-Sum Formulas
Homework: Page 394, #3, 5, 7, 14, 32, 33, 40, 48, 57
2
Double Angle Formulas
3
Double Angle Formulas
4
Double Angle Formulas
5
Power Reducing Formulas
6
Half-Angle Formulas The signs of sine and cosine depend on which quadrant the angle ends up in.
7
Product-to-Sum Formulas
8
Sum-to-Product Formulas
9
Examples Example 1: Solve πππ 2π₯+πππ π₯=0 2 πππ 2 π₯β1+πππ π₯=0
2 πππ 2 π₯+πππ π₯β1=0 2πππ π₯β1 πππ π₯+1 =0 2πππ π₯β1 =0 πππ πππ π₯+1 =0 πππ π₯= 1 2 πππ πππ π₯=β1 π₯= πππ β πππ π₯= πππ β1 β1 π₯= π 3 +2ππ, π₯= 5π 3 +2ππ π₯=π+2ππ
10
Example 2: Analyze the graph on the interval [0, 2Ο)
π¦=3(1β 2π ππ 2 π₯) π¦=3πππ (2π’) Amplitude = 3, period = Ο Key points on the interval [0,Ο] are: 0, 3 , π 4 , 0 , π 2 , β3 , 3π 4 , 0 , (π,3)
11
Example 3: Find sin(2u), cos(2u), and tan(2u), given:
π πππ’= 3 5 , 0<π’< π 2 πππ π’= 4 5 π‘πππ’= 3 4 tan 2π’ = 2β β cos 2π’ = β sin 2π’ =2β β 4 5 = 24 25 = β 9 15 = β 9 16 = 7 25 = 3 2 β 16 7 = 24 7
12
Example 4: Derive a triple-angle formula for cos3x
cos 3π₯ =cosβ‘(2π₯+π₯) =πππ 2π₯πππ π₯βπ ππ2π₯π πππ₯ = 2 πππ 2 π₯β1 πππ π₯β(2π πππ₯πππ π₯)π πππ₯ =2 πππ 3 π₯βπππ π₯β2 π ππ 2 π₯πππ π₯ =2 πππ 3 π₯βπππ π₯β2πππ π₯ (1βπππ 2 π₯) =2 πππ 3 π₯βπππ π₯β2πππ π₯+ 2 πππ 3 π₯ =4 πππ 3 π₯β3πππ π₯
13
Example 5: Rewrite tan4x as a quotient of first powers of the cosines of multiple angles.
π‘ππ 4 π₯= 1βπππ 2π₯ 1+cosβ‘2π₯ 1βπππ 2π₯ 1+cosβ‘2π₯ = 1βπππ 2π₯βπππ 2π₯+ πππ 2 2π₯ 1+πππ 2π₯+πππ 2π₯+ πππ 2 2π₯ = 1β2πππ 2π₯+ 1+πππ 4π₯ πππ 2π₯+ 1+πππ 4π₯ 2 = 2β4πππ 2π₯+1+πππ 4π₯ πππ 2π₯+1+πππ 4π₯ 2 = 3β4πππ 2π₯+πππ 4x 3+4πππ 2π₯+πππ 4π₯
14
Example 6: Use the half-angle formulas to determine the exact values of the sine, cosine, and tangent of 15ο°. NOTE: 15ο° is half of 30ο° and 15ο° lies in Quadrant I: π ππ 30Β° 2 = 1βπππ 30ο° 2 πππ 30Β° 2 = 1+πππ 30ο° 2 = 1β = = 2β = = 2β β 1 2 = β 1 2 = 2β =
15
π‘ππ 30Β° 2 = 1βπππ 30Β° π ππ30Β° = 1β = 2β = 2β ο 2 1 = 2β 3 2
16
Example 7: Rewrite the following product as a sum or difference:
π ππ5π₯πππ 3π₯ = sin 5π₯+3π₯ +sinβ‘(5π₯β3π₯) = sin 8π₯ +sinβ‘(2π₯)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.