Download presentation
Presentation is loading. Please wait.
1
Wellcome Centre for Neuroimaging, UCL, UK.
Bayesian Inference Will Penny Wellcome Centre for Neuroimaging, UCL, UK. SPM for fMRI Course, London, October 21st, 2010
2
What is Bayesian Inference ?
(From Daniel Wolpert)
3
Bayesian segmentation
and normalisation realignment smoothing general linear model statistical inference Gaussian field theory normalisation p <0.05 template
4
Bayesian segmentation
and normalisation Smoothness modelling realignment smoothing general linear model statistical inference Gaussian field theory normalisation p <0.05 template
5
Bayesian segmentation Posterior probability
and normalisation Smoothness estimation Posterior probability maps (PPMs) realignment smoothing general linear model statistical inference Gaussian field theory normalisation p <0.05 template
6
Bayesian segmentation Posterior probability
and normalisation Smoothness estimation Posterior probability maps (PPMs) Dynamic Causal Modelling realignment smoothing general linear model statistical inference Gaussian field theory normalisation p <0.05 template
7
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
8
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
9
General Linear Model Model:
10
Prior Model: Prior:
11
Prior Model: Prior: Sample curves from prior (before observing any data) Mean curve
12
Priors and likelihood Model: Prior: Likelihood:
13
Priors and likelihood Model: Prior: Likelihood:
14
Posterior after one observation
Model: Prior: Likelihood: Bayes Rule: Posterior:
15
Posterior after two observations
Model: Prior: Likelihood: Bayes Rule: Posterior:
16
Posterior after eight observations
Model: Prior: Likelihood: Bayes Rule: Posterior:
17
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
18
SPM Interface
19
Posterior Probability Maps
ML aMRI Smooth Y (RFT) AR coeff (correlated noise) prior precision of AR coeff observations GLM prior precision of GLM coeff Observation noise Bayesian q
20
ROC curve Sensitivity 1-Specificity
21
Posterior Probability Maps
Display only voxels that exceed e.g. 95% activation threshold Posterior density Probability mass p Mean (Cbeta_*.img) PPM (spmP_*.img) probability of getting an effect, given the data mean: size of effect covariance: uncertainty Std dev (SDbeta_*.img)
22
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
23
Dynamic Causal Models Posterior Density Priors Are Physiological
V1 V5 SPC Posterior Density Priors Are Physiological V5->SPC
24
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
25
Model Evidence Bayes Rule: normalizing constant Model evidence
26
Bayes factor: Model Evidence Posterior Prior Model, m=j Model, m=i SPC
27
Bayes factor: Prior Posterior Evidence Model For Equal Model Priors
28
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
29
Bayes Factors versus p-values
Two sample t-test Subjects Conditions
30
p=0.05 Bayesian BF=3 Classical
31
BF=20 Bayesian BF=3 Classical
32
p=0.05 BF=20 Bayesian BF=3 Classical
33
p=0.01 p=0.05 BF=20 Bayesian BF=3 Classical
34
Model Evidence Revisited
35
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
38
Free Energy Optimisation
Initial Point Precisions, a Parameters, q
39
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
40
m2 m1 incorrect model (m2) correct model (m1) x1 x2 u1 x3 u2 x1 x2 u1
Figure 2
41
m2 m1 Models from Klaas Stephan MOG LG RVF stim. LVF FG LD LD|RVF
LD|LVF MOG LG RVF stim. LVF FG LD|RVF LD|LVF LD m2 m1 Models from Klaas Stephan
42
Random Effects (RFX) Inference
log p(yn|m)
43
Gibbs Sampling Frequencies, r Stochastic Method Assignments, A
Initial Point Frequencies, r Stochastic Method Assignments, A
44
log p(yn|m) Gibbs Sampling
45
m2 m1 11/12=0.92 MOG LG RVF stim. LVF FG LD LD|RVF LD|LVF MOG LG RVF
47
Overview Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
48
Compute log-evidence for each model/subject
PPMs for Models Compute log-evidence for each model/subject model 1 model K subject 1 subject N Log-evidence maps
51
PPMs for Models Compute log-evidence for each model/subject model 1
model K subject 1 subject N Log-evidence maps BMS maps Probability that model k generated data PPM EPM Rosa et al Neuroimage, 2009
52
Computational fMRI: Harrison et al (in prep)
Long Time Scale Short Time Scale Frontal cortex Primary visual cortex
53
Non-nested versus nested comparison
For detecting model B: Non-nested: Compare model A versus model B Nested: versus model AB Penny et al, HBM,2007
54
Double Dissociations Long Time Short Scale Time Scale Frontal cortex
Primary visual cortex
55
Summary Parameter Inference Model Inference Model Estimation
GLMs, PPMs, DCMs Model Inference Model Evidence, Bayes factors (cf. p-values) Model Estimation Variational Bayes Groups of subjects RFX model inference, PPM model inference
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.