Download presentation
Presentation is loading. Please wait.
1
f3 measurements by Belle
Pavel Krokovny KEK Introduction Apparatus Method Results Summary
2
Unitarity Triangle Using unitarity requirement:
φ1 is measured with a high accuracy (~1º) at B-factories. φ3 is the most challenging angle to measure. Measurement of all the angles needed to test SM.
3
Constraints of the Unitarity Triangle
World average as of summer 2005 from GLW, ADS, Dalitz and sin(2φ1+φ3): γ/φ3=70 -14° +12
4
KEKB and Belle KEKB Collider L= 1.65 x 1034 cm–2s–1 (world record)
3.5 GeV e+ & 8 GeV e– beams 3 km circumference, 11 mrad crossing angle L= 1.65 x 1034 cm–2s–1 (world record) L dt = 630 Υ(4S)+off(~10%)
5
B+ D0K+ decay B– D0K–: B– D0K– :
Need to use the decay where Vub contribution interferes with another weak vertex. B– D0K–: B– D0K– : If D0 and D0 decay into the same final state, Relative phase: (B– DK–), (B+ DK+) includes weak (γ/φ3) and strong (δ) phase. Amplitude ratio:
6
GLW method A1,2 of different signs
M. Gronau and D. London, PLB 253, 483 (1991); M. Gronau and D. Wyler, PLB 265, 172 (1991) СР eigenstate of D-meson is used (DCP). CP-even : D1 K+K–, π+ π – CP-odd : D2 KS π0, KS ω, KS φ, KSη… СР-asymmetry: for D1 A1,2 of different signs for D2 Additional constraint: 4 equations (3 independent: ), 3 unknowns
7
GLW method B D1K B D2K B D*1K B D*2K Belle results (253 fb-1)
Phys. Rev. D 73, (R) (2006) B± DK± B D1K 1.13 ±0.16±0.05 0.06±0.14±0.05 B D2K 1.17±0.14±0.14 -0.12±0.14±0.05 B+ D1K+ B- D1K- B± D*K± B D*1K 1.41±0.25±0.06 -0.20±0.22±0.04 B D*2K 1.15±0.31±0.12 0.13±0.30±0.08 B+ D2K+ B- D2K- GLW analyses alone do not constrain γ/φ3 significantly yet, but can be combined with other measurements and provide information on rB
8
ADS method B–D0K– - color allowed B–D0K– - color suppressed
D. Atwood, I. Dunietz and A. Soni, PRL 78, 3357 (1997); PRD 63, (2001) Enhancement of СР-violation due to use of Cabibbo-suppressed D decays B–D0K– - color allowed D0K+π– - doubly Cabibbo-suppressed B–D0K– - color suppressed D0K+π– - Cabibbo-allowed Interfering amplitudes are comparable
9
ADS method rB<0.18 (90% CL) Belle results (357 fb-1) hep-ex/0508048
Suppressed channel not visible yet: Using rD=0.060±0.003, for maximum mixing (φ3=0, δ=180°): rB<0.18 (90% CL)
10
Dalitz analysis method
A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, (2003) A. Bondar, Proc. of Belle Dalitz analysis meeting, Sep 2002. Using 3-body final state, identical for D0 and D0: Ksπ+π-. Dalitz distribution density: (assuming СР-conservation in D0 decays) If is known, parameters are obtained from the fit to Dalitz distributions of D Ksπ+π– from B±DK± decays
11
Dalitz analysis: D0 Ksπ+π–
Statistical sensitivity of the method depends on the properties of the 3-body decay involved. (For |M|2=Const there is no sensitivity to the phase θ) Large variations of D0 decay strong phase are essential Use the model-dependent fit to experimental data from flavor-tagged D* D0π sample. Model is described by the set of two-body amplitudes + nonresonant term. As a result, model uncertainty in the γ/φ3 measurement.
12
D0 Ksπ+π– Decay Model D*->D0π->[KSπ+π-]π Doubly Cabibbo
M (GeV 2 ) Ksπ – 2 Doubly Cabibbo Suppressed K* ρ-ω interference
13
Dalitz analysis: sensitivity to f3
14
Dalitz analysis Phys. Rev. D 73, (2006) Fit parameters are x= r cos(φ3+δ) and y= r sin(φ3+δ) (better behaved statistically than ) are obtained from frequentist statistical treatment based on PDFs from toy MC simulation. BDK BD*K BDK* x–= y–= x+= – y+= – +0.072 x-= – y-= – x+= y+= x–= – y–= – x+= – y+= – +0.167 +0.249 +0.093 +0.172 +0.440 +0.069 +0.120 +0.177 +0.090 +0.137 +0.164
15
Dalitz analysis Belle result (357 fb-1) 331±17 events 81±8 events
Phys. Rev. D 73, (2006) BD*K BDK* BDK 331±17 events 81±8 events 54±8 events B- B+ B- B+ B- B+
16
Dalitz analysis φ3=66-20 °(stat) φ3=86-93°(stat) φ3=11-57°(stat) +19
Phys. Rev. D 73, (2006) BDK BDK* BD*K φ3=66-20 °(stat) φ3=86-93°(stat) φ3=11-57°(stat) +19 +37 +23 Combined for 3 modes: φ3=53°+15 3° (syst)9° (model) 8°<φ3<111° (2σ interval) rDK = 0.012(syst)0.049(model) CPV significance: 74% rD*K= 0.013(syst)0.049(model) rDK*= 0.041(syst)0.084(model) -18 -0.050 -0.099 -0.155
17
sin(2φ1+φ3) from B0 D*π decay
Use B flavor tag, measure time-dependent decay rates: Btag B0 B D-+ Btag B0 where CP violation
18
sin(2φ1+φ3) - full reconstruction with - partial reconstruction
Belle result (357 fb-1) Phys. Rev. D 73, (2006) - full reconstruction with partial reconstruction (reconstruct only pions) D*π partial rec D*π full rec
19
sin(2φ1+φ3) S +(D*π)=0.049±0.020±0.011 S –(D*π)=0.031±0.019±0.011
Phys. Rev. D 73, (2006) S +(D*π)=0.049±0.020±0.011 S –(D*π)=0.031±0.019±0.011 S +(Dπ)=0.031±0.030±0.012 S –(Dπ)=0.068±0.029±0.012 Full-rec + partial-rec Full-rec CP violation significance: 2.5σ If R~0.02: |sin(2φ1+φ3)|>0.46 (0.13) |sin(2φ1+φ3)|>0.48 (0.07) at 68% (95%) CL
20
Summary The angle φ3/g remains the most difficult angle of the Unitarity Triangle to measure, although there is a tremendous progress from B-factories. O(20º) Precision in direct measurements of φ3 is achieved using new GGSZ method (B->D0[KSππ]K) Other methods do not constrain γ/φ3 significantly yet, but can be used in combined fit and provide information on rB The precision is statistically limited good perspectives for improving the result with larger data set
21
Backup
22
B± DK±, DKSπ+π– Dalitz plots
K*(892) bands D0 from B- D0K- (π+ and π - interchanged) D0 from B+ D0K+
23
Control sample Same fit procedure was applied for the control sample: B D(*) p The results are consistent with r=0.01 for D(*)0 and with 0 for D*- p+
24
Systematic errors Background shape: baseline – BB MC + continuum data sample, variations – continuum only, MBC sidebands. Efficiency over Dalitz plot: main fit – MC, variation – use high momentum D*[D p] DE – MBC shape: vary shape parameters by 1 s DE – MBC for BB and qq: use different shape for qq and BB
25
D0 Ksπ+π– decay model Intermediate state Amplitude Phase, °
Fit fraction KS σ (M=520±15 MeV, Γ=466±31 MeV) KS ρ(770) KS ω KS f0(980) KS σ (M=1059±6 MeV, Γ=59±10 MeV) KS f2(1270) KS f0(1370) KS ρ(1450) K* (892)+π– K*(892)–π+ K*(1410)+π– K*(1410)–π+ K*0(1430)+π– K*0(1430)–π+ K*2(1430)+π– K*2(1430)–π+ K*(1680)+π– K*(1680)–π+ Nonresonant 1.43±0.07 1 (fixed) 0.0314±0.0008 0.365±0.006 0.23±0.02 1.32±0.04 1.44±0.10 0.66±0.07 1.644±0.010 0.144±0.004 0.61±0.06 0.45±0.04 2.15±0.04 0.47±0.04 0.88±0.03 0.25±0.02 1.39±0.27 1.2±0.2 3.0±0.3 212±4 0 (fixed) 110.8±1.6 201.9±1.9 237±11 348±2 82±6 9±8 132.1±0.5 320.3±1.5 113±4 254±5 353.6±1.2 88±4 318.7±1.9 265±6 103±12 118±11 164±5 9.8% 21.6% 0.4% 4.9% 0.6% 1.5% 1.1% 61.2% 0.55% 0.05% 0.14% 7.4% 0.43% 2.2% 0.09% 0.36% 0.11% 9.7%
26
Model-independent approach
D0 decay amplitude: D0-D0 interference from B+ D0K+: is measured directly, is model-dependent If CP-tagged D0 are available (e.g. from ψ’’ D0 D0 , where tag-side D0 decays into CP-eigenstate) phase difference can be measured:
27
Model-independent Approach
A.Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, (2003) A.Bondar, A.Poluektov hep-ph/ 50 ab-1 at SuperB factory should be enough for model-independent γ/φ3 Measurement with accuracy below 2° ~10 fb-1 at ψ(3770) needed to accompany this measurement.
28
Dalitz analysis: sensitivity to f3
29
Constraints to rB
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.