Download presentation
Presentation is loading. Please wait.
Published byΤερψιχόρη Βονόρτας Modified over 5 years ago
1
Speaker: Yumin Adviser: Prof. An-Yeu Wu Date: 2013/10/24
102-1 Under-Graduate Project Final Project : Single-path Delay Feedback FFT Speaker: Yumin Adviser: Prof. An-Yeu Wu Date: 2013/10/24
2
IDFT/DFT & IFFT/FFT DFT IDFT
Definition of Discrete Fourier Transform (DFT) and Inverse DFT (IDFT) Fast Fourier Transform (FFT) is based on the concept of “Divide-and-Conquer”. DFT x[n] Time domain sequence X[k] Frequency domain spectrum IDFT Twiddle factor : [1]
3
Radix-2 Butterfly of DIT & DIF
DIT : Decimation in time DIF : Decimation in frequency xi-1(k) xi-1(m) Xi(m) Xi(k) Twiddle factor Wn -1 xi-1(k) xi-1(m) Xi(k) Xi(m) Twiddle factor Wn -1
4
8-Point FFT DIT Signal Flow
DFT-4 DFT-2 Bit-reverse order Normal order 000 100 010 110 001 101 011 111 000 001 010 011 100 101 110 111 [1]
5
8-Point FFT DIF Signal Flow
DFT-2 DFT-4 Normal order Bit-reverse order 000 001 010 011 100 101 110 111 000 100 010 110 001 101 011 111 [1]
6
Hardware Implementation of FFT
Fully Spread Reuse of Single Butterfly Slow Speed Fast Small Area Large Complex Control Simple
7
Radix-2 Single-path Delay Feedback for N=16
[2]
8
Relationship of Radix-4 & Radix-22
BF4 BF2i BF2ii [2]
9
Radix-22 Single-path Delay Feedback for N=256
BF2i 1 Xr(n) Xi(n) Xr(n+N/2) Xi(n+N/2) Zr(n) Zi(n) Zr(n+N/2) Zi(n+N/2) - Xi(n+N/2) Xr(n+N/2) t s BF2ii 1 Xr(n) Xi(n) Zr(n) Zi(n) Zr(n+N/2) Zi(n+N/2) - [2]
10
Project Topic - FFT Topic: Single-path Delay Feedback FFT 期中報告: 11/21
Study of Algorithm Behavior Model of FFT (C++ or Matlab) Architecture Design and Analysis Floating Point Modeling Fixed-point Analysis 期末報告: 1/09 More Architecture Design and Analysis Implementation by Verilog
11
Specification of FFT Requirements for 64-point FFT Evaluation Equation
Input data : 9+1-bit pure signed fraction Number of bits for output data : Designed-defined Number of bits for twiddle factor : Designer-defined SQNR ≧ 50dB Pass the test data provided Evaluation Equation Score = Area * (executoin time)2 The lower score, the higher performance
12
Optimal set: 2+6 = 8 Integer 2 bits Fractional 6 bits Fixed twiddle
13
Optimal set: 9+2 = 11 Integer 2 bits Twiddle 9 bits Fix Fractional
14
Optimal set: 9+7 = 15 Twiddle 9 bits Fractional 7 bits Fix Integer
15
Fractional 7 bits, Twiddle 9+1 bits
16
References [1] Alan V.Oppenheim, Ronald W. Schafer, ”Discrete-time signal processing” 2nd edition. [2] Shousheng He and Torkelson, M.,”A new approach to pipeline FFT processor,” Proceedings of IPPS '96, April 1996, pp766 –770.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.