Download presentation
Presentation is loading. Please wait.
1
Chapter 12 The Cell Cycle
2
Overview: The Key Roles of Cell Division
The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of life is based on the reproduction of cells, or cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
3
Fig. 12-1 Figure 12.1 How do a cell’s chromosomes change during cell division?
4
Multicellular organisms depend on cell division for:
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: Development from a fertilized cell Growth Repair Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
5
20 µm (c) Tissue renewal Fig. 12-2c
Figure 12.2 The functions of cell division (c) Tissue renewal
6
Concept 12.1: Cell division results in genetically identical daughter cells
Most cell division results in daughter cells with identical genetic information, DNA A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
7
Cellular Organization of the Genetic Material
All the DNA in a cell constitutes the cell’s genome A genome can consist of a single DNA molecule (common in prokaryotic cells) or a number of DNA molecules (common in eukaryotic cells) DNA molecules in a cell are packaged into chromosomes Gene: is the fundamental units of heredity responsible for a given trait. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
9
Fig. 12-3 Figure 12.3 Eukaryotic chromosomes 20 µm
10
Somatic cells (nonreproductive cells) have two sets of chromosomes
Every eukaryotic species has a characteristic number of chromosomes in each cell nucleus Somatic cells (nonreproductive cells) have two sets of chromosomes Gametes (reproductive cells: sperm and eggs) have half as many chromosomes as somatic cells Eukaryotic chromosomes consist of chromatin, a complex of DNA and protein that condenses during cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
11
Distribution of Chromosomes During Eukaryotic Cell Division
In preparation for cell division, DNA is replicated and the chromosomes condense Each duplicated chromosome has two sister chromatids, which separate during cell division The centromere is the narrow “waist” of the duplicated chromosome, where the two chromatids are most closely attached Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
12
0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome
Fig. 12-4 0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome duplication (including DNA synthesis) Centromere Sister chromatids Figure 12.4 Chromosome duplication and distribution during cell division Separation of sister chromatids Centromere Sister chromatids
13
Eukaryotic cell division consists of:
Mitosis, the division of the nucleus Cytokinesis, the division of the cytoplasm Gametes are produced by a variation of cell division called meiosis Meiosis yields nonidentical daughter cells that have only one set of chromosomes, half as many as the parent cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
14
Phases of the Cell Cycle
The cell cycle consists of Mitotic (M) phase (mitosis and cytokinesis) Interphase (cell growth and copying of chromosomes in preparation for cell division) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
15
Interphase (about 90% of the cell cycle) can be divided into subphases:
G1 phase (“first gap”) S phase (“synthesis”) G2 phase (“second gap”) The cell grows during all three phases, but chromosomes are duplicated only during the S phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
16
S (DNA synthesis) G1 Cytokinesis G2 Mitosis
Fig. 12-5 INTERPHASE S (DNA synthesis) G1 Cytokinesis G2 Mitosis Figure 12.5 The cell cycle MITOTIC (M) PHASE
17
Mitosis is conventionally divided into five phases:
Prophase Prometaphase Metaphase Anaphase Telophase Cytokinesis is well underway by late telophase For the Cell Biology Video Myosin and Cytokinesis, go to Animation and Video Files. BioFlix: Mitosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
18
Chromosome, consisting of two sister chromatids
Fig. 12-6 G2 of Interphase Prophase Prometaphase Metaphase Anaphase Telophase and Cytokinesis Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule Spindle Centrosome at one spindle pole Nuclear envelope forming
19
G2 of Interphase Prophase Prometaphase
Fig. 12-6a Figure 12.6 The mitotic division of an animal cell G2 of Interphase Prophase Prometaphase
20
Chromosome, consisting of two sister chromatids
Fig. 12-6b G2 of Interphase Prophase Prometaphase Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Figure 12.6 The mitotic division of an animal cell Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule
21
During prometaphase, some spindle microtubules attach to the kinetochores of chromosomes and begin to move the chromosomes At metaphase, the chromosomes are all lined up at the metaphase plate, the midway point between the spindle’s two poles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
22
Chromosome, consisting of two sister chromatids
Fig. 12-6b G2 of Interphase Prophase Prometaphase Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Figure 12.6 The mitotic division of an animal cell Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule
23
Fig. 12-7 Aster Centrosome Sister chromatids Microtubules Chromosomes Metaphase plate Kineto- chores Centrosome 1 µm Figure 12.7 The mitotic spindle at metaphase Overlapping nonkinetochore microtubules Kinetochore microtubules 0.5 µm
24
The microtubules shorten by depolymerizing at their kinetochore ends
In anaphase, sister chromatids separate and move along the kinetochore microtubules toward opposite ends of the cell The microtubules shorten by depolymerizing at their kinetochore ends For the Cell Biology Video Microtubules in Anaphase, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
25
Cytokinesis: A Closer Look
In animal cells, cytokinesis occurs by a process known as cleavage, forming a cleavage furrow In plant cells, a cell plate forms during cytokinesis Animation: Cytokinesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
26
Telophase and Cytokinesis
Fig. 12-6c Figure 12.6 The mitotic division of an animal cell Metaphase Anaphase Telophase and Cytokinesis
27
Telophase and Cytokinesis
Fig. 12-6d Metaphase Anaphase Telophase and Cytokinesis Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nuclear envelope forming Spindle Centrosome at one spindle pole
28
Figure 12.9 Cytokinesis in animal and plant cells
Vesicles forming cell plate Wall of parent cell 1 µm 100 µm Cleavage furrow Cell plate New cell wall Figure 12.9 Cytokinesis in animal and plant cells Contractile ring of microfilaments Daughter cells Daughter cells (a) Cleavage of an animal cell (SEM) (b) Cell plate formation in a plant cell (TEM)
29
(a) Cleavage of an animal cell (SEM)
Fig. 12-9a 100 µm Cleavage furrow Figure 12.9a Cytokinesis in animal and plant cells Contractile ring of microfilaments Daughter cells (a) Cleavage of an animal cell (SEM)
30
(b) Cell plate formation in a plant cell (TEM)
Fig. 12-9b Vesicles forming cell plate Wall of parent cell 1 µm Cell plate New cell wall Figure 12.9b Cytokinesis in animal and plant cells Daughter cells (b) Cell plate formation in a plant cell (TEM)
31
10 µm Fig. 12-10 Nucleus Chromatin condensing Nucleolus Chromosomes
Cell plate Figure Mitosis in a plant cell 1 Prophase 2 Prometaphase 3 Metaphase 4 Anaphase 5 Telophase
32
Nucleus 1 Prophase Chromatin condensing Nucleolus Fig. 12-10a
Figure Mitosis in a plant cell 1 Prophase
33
Chromosomes 2 Prometaphase Fig. 12-10b
Figure Mitosis in a plant cell 2 Prometaphase
34
Fig c Figure Mitosis in a plant cell 3 Metaphase
35
Fig d Figure Mitosis in a plant cell 4 Anaphase
36
10 µm Cell plate 5 Telophase Fig. 12-10e
Figure Mitosis in a plant cell 5 Telophase
37
Binary Fission Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
38
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Figure Bacterial cell division by binary fission
39
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission
40
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission
41
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission
42
EXPERIMENT RESULTS Experiment 1 Experiment 2 S G1 M G1 S S M M
Fig EXPERIMENT Experiment 1 Experiment 2 S G1 M G1 RESULTS S S M M When a cell in the S phase was fused with a cell in G1, the G1 nucleus immediately entered the S phase—DNA was synthesized. When a cell in the M phase was fused with a cell in G1, the G1 nucleus immediately began mitosis—a spindle formed and chromatin condensed, even though the chromosome had not been duplicated. Figure Do molecular signals in the cytoplasm regulate the cell cycle?
43
The Cell Cycle Control System
The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock The cell cycle control system is regulated by both internal and external controls The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
44
G1 checkpoint Control system S G1 G2 M M checkpoint G2 checkpoint
Fig G1 checkpoint Control system S G1 G2 M Figure Mechanical analogy for the cell cycle control system M checkpoint G2 checkpoint
45
For many cells, the G1 checkpoint seems to be the most important one
If a cell receives a go-ahead signal at the G1 checkpoint, it will usually complete the S, G2, and M phases and divide If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the G0 phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
46
G0 G1 G1 G1 checkpoint (b) Cell does not receive a go-ahead signal
Fig G0 G1 checkpoint Figure The G1 checkpoint G1 G1 Cell receives a go-ahead signal (b) Cell does not receive a go-ahead signal
47
The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases
Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclin-dependent kinases (Cdks) The activity of cyclins and Cdks fluctuates during the cell cycle MPF (maturation-promoting factor) is a cyclin-Cdk complex that triggers a cell’s passage past the G2 checkpoint into the M phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
48
Fig RESULTS 5 30 4 20 3 % of dividing cells (– ) Protein kinase activity (– ) 2 10 1 Figure How does the activity of a protein kinase essential for mitosis vary during the cell cycle? 100 200 300 400 500 Time (min)
49
M G1 S G2 M G1 S G2 M G1 Fig. 12-17 MPF activity Cyclin concentration
Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle G1 S Cdk Figure Molecular control of the cell cycle at the G2 checkpoint Cyclin accumulation M Degraded cyclin G2 G2 Cdk Cyclin is degraded checkpoint Cyclin MPF (b) Molecular mechanisms that help regulate the cell cycle
50
(a) Fluctuation of MPF activity and cyclin concentration during
Fig a M G1 S G2 M G1 S G2 M G1 MPF activity Cyclin concentration Figure Molecular control of the cell cycle at the G2 checkpoint Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle
51
(b) Molecular mechanisms that help regulate the cell cycle
Fig b G1 S Cdk Cyclin accumulation M Degraded cyclin G2 G2 checkpoint Cdk Figure Molecular control of the cell cycle at the G2 checkpoint Cyclin is degraded Cyclin MPF (b) Molecular mechanisms that help regulate the cell cycle
52
Stop and Go Signs: Internal and External Signals at the Checkpoints
An example of an internal signal is that kinetochores not attached to spindle microtubules send a molecular signal that delays anaphase Some external signals are growth factors, proteins released by certain cells that stimulate other cells to divide For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
53
Scalpels Petri plate Without PDGF cells fail to divide With PDGF
Fig Scalpels Petri plate Without PDGF cells fail to divide Figure The effect of a growth factor on cell division With PDGF cells prolifer- ate Cultured fibroblasts 10 µm
54
Another example of external signals is density-dependent inhibition, in which crowded cells stop dividing Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
55
Density-dependent inhibition
Fig Anchorage dependence Density-dependent inhibition Density-dependent inhibition Figure Density-dependent inhibition and anchorage dependence of cell division 25 µm 25 µm (a) Normal mammalian cells (b) Cancer cells
56
Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
57
Loss of Cell Cycle Controls in Cancer Cells
Cancer cells do not respond normally to the body’s control mechanisms Cancer cells may not need growth factors to grow and divide: They may make their own growth factor They may convey a growth factor’s signal without the presence of the growth factor They may have an abnormal cell cycle control system Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
58
A normal cell is converted to a cancerous cell by a process called transformation
Cancer cells form tumors, masses of abnormal cells within otherwise normal tissue If abnormal cells remain at the original site, the lump is called a benign tumor Malignant tumors invade surrounding tissues and can metastasize, exporting cancer cells to other parts of the body, where they may form secondary tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
59
Lymph vessel Tumor Blood vessel Cancer cell Glandular tissue
Fig Lymph vessel Tumor Blood vessel Cancer cell Glandular tissue Metastatic tumor 1 A tumor grows from a single cancer cell. 2 Cancer cells invade neigh- boring tissue. 3 Cancer cells spread to other parts of the body. 4 Cancer cells may survive and establish a new tumor in another part of the body. Figure The growth and metastasis of a malignant breast tumor
60
G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and
Fig. 12-UN1 INTERPHASE G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and Cytokinesis Prometaphase Anaphase Metaphase
61
Fig. 12-UN2
62
Fig. 12-UN3
63
Fig. 12-UN4
64
Fig. 12-UN5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.