Download presentation
Presentation is loading. Please wait.
2
1.3 – Trigonometric Functions
Math 150 1.3 – Trigonometric Functions
7
Trigonometric functions definitions: 𝐬𝐢𝐧 𝜽 = 𝒚 𝒓 𝐜𝐬𝐜 𝜽 = 𝒓 𝒚
𝐜𝐨𝐬 𝜽 = 𝒙 𝒓 𝐬𝐞𝐜 𝜽 = 𝒓 𝒙 𝐭𝐚𝐧 𝜽 = 𝒚 𝒙 𝐜𝐨𝐭 𝜽 = 𝒙 𝒚 (Note: 𝑟= 𝑥 2 + 𝑦 2 )
8
Trigonometric functions definitions: 𝐬𝐢𝐧 𝜽 = 𝒚 𝒓 𝐜𝐬𝐜 𝜽 = 𝒓 𝒚
𝐜𝐨𝐬 𝜽 = 𝒙 𝒓 𝐬𝐞𝐜 𝜽 = 𝒓 𝒙 𝐭𝐚𝐧 𝜽 = 𝒚 𝒙 𝐜𝐨𝐭 𝜽 = 𝒙 𝒚 (Note: 𝑟= 𝑥 2 + 𝑦 2 )
9
Trigonometric functions definitions: 𝐬𝐢𝐧 𝜽 = 𝒚 𝒓 𝐜𝐬𝐜 𝜽 = 𝒓 𝒚
𝐜𝐨𝐬 𝜽 = 𝒙 𝒓 𝐬𝐞𝐜 𝜽 = 𝒓 𝒙 𝐭𝐚𝐧 𝜽 = 𝒚 𝒙 𝐜𝐨𝐭 𝜽 = 𝒙 𝒚 (Note: 𝑟= 𝑥 2 + 𝑦 2 )
10
Trigonometric functions definitions: 𝐬𝐢𝐧 𝜽 = 𝒚 𝒓 𝐜𝐬𝐜 𝜽 = 𝒓 𝒚
𝐜𝐨𝐬 𝜽 = 𝒙 𝒓 𝐬𝐞𝐜 𝜽 = 𝒓 𝒙 𝐭𝐚𝐧 𝜽 = 𝒚 𝒙 𝐜𝐨𝐭 𝜽 = 𝒙 𝒚 (Note: 𝑟= 𝑥 2 + 𝑦 2 )
11
Trigonometric functions definitions: 𝐬𝐢𝐧 𝜽 = 𝒚 𝒓 𝐜𝐬𝐜 𝜽 = 𝒓 𝒚
𝐜𝐨𝐬 𝜽 = 𝒙 𝒓 𝐬𝐞𝐜 𝜽 = 𝒓 𝒙 𝐭𝐚𝐧 𝜽 = 𝒚 𝒙 𝐜𝐨𝐭 𝜽 = 𝒙 𝒚 (Note: 𝑟= 𝑥 2 + 𝑦 2 )
12
Trigonometric functions definitions: 𝐬𝐢𝐧 𝜽 = 𝒚 𝒓 𝐜𝐬𝐜 𝜽 = 𝒓 𝒚
𝐜𝐨𝐬 𝜽 = 𝒙 𝒓 𝐬𝐞𝐜 𝜽 = 𝒓 𝒙 𝐭𝐚𝐧 𝜽 = 𝒚 𝒙 𝐜𝐨𝐭 𝜽 = 𝒙 𝒚 (Note: 𝑟= 𝑥 2 + 𝑦 2 )
13
Trigonometric functions definitions: 𝐬𝐢𝐧 𝜽 = 𝒚 𝒓 𝐜𝐬𝐜 𝜽 = 𝒓 𝒚
𝐜𝐨𝐬 𝜽 = 𝒙 𝒓 𝐬𝐞𝐜 𝜽 = 𝒓 𝒙 𝐭𝐚𝐧 𝜽 = 𝒚 𝒙 𝐜𝐨𝐭 𝜽 = 𝒙 𝒚 (Note: 𝑟= 𝑥 2 + 𝑦 2 )
14
Ex 1. The terminal side of an angle 𝜃 in standard position passes through the point 3,7 . Find the values of the six trigonometric functions of angle 𝜃.
15
Ex 2. The terminal side of an angle 𝜃 in standard position passes through the point −3,−4 . Find the values of the six trigonometric functions of angle 𝜃.
16
Quadrants
17
Quadrants
18
Quadrants
19
Quadrants
20
Quadrants
21
Quadrants
22
Ex 3. Find the values of the six trigonometric functions for an angle of 90 ∘ .
23
Ex 4. Evaluate sin 540 ∘ .
24
Ex 5. Evaluate sec − 450 ∘ .
25
Note: The values of the trig functions only depend on the angle 𝜃, not on the point on the terminal side. Why? Because corresponding sides of similar triangles are proportional.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.