Download presentation
Presentation is loading. Please wait.
1
Proofs & Confirmations The story of the
alternating sign matrix conjecture David M. Bressoud Macalester College MAA Northeastern Section November 20, 2004 Worcester, MA
2
Institute for Defense Analysis
Bill Mills Institute for Defense Analysis 1 –1 Howard Rumsey Dave Robbins
3
Charles L. Dodgson aka Lewis Carroll
1 –1 “Condensation of Determinants,” Proceedings of the Royal Society, London 1866
4
1 –1 n 1 2 3 4 5 6 7 8 9 An 42 429 7436 218348
5
How many n n alternating sign matrices?
1 –1 n 1 2 3 4 5 6 7 8 9 An 42 429 7436 218348 = 2 3 7 = 3 11 13 = 22 11 132 = 22 132 17 19 = 23 13 172 192 = 22 5 172 193 23 How many n n alternating sign matrices?
6
1 –1 n 1 2 3 4 5 6 7 8 9 An 42 429 7436 218348 very suspicious = 2 3 7 = 3 11 13 = 22 11 132 = 22 132 17 19 = 23 13 172 192 = 22 5 172 193 23
7
There is exactly one 1 in the first row
2 3 4 5 6 7 8 9 An 42 429 7436 218348 There is exactly one 1 in the first row 1 –1
8
There is exactly one 1 in the first row
2 3 4 5 6 7 8 9 An 1+1 2+3+2 … There is exactly one 1 in the first row 1 –1
9
1 1 –1
10
1 1 –1 + + +
11
1 1 –1 + + +
12
1 1 2/2 1 2 2/ /2 2 7 2/ /2 7 42 2/ /2 42 429 2/ /2 429 1 –1
13
1 1 2/2 1 2 2/ /2 2 7 2/ / /2 7 42 2/ / / /2 42 429 2/ / / / /2 429 1 –1
14
2/2 2/ /2 2/ / /2 2/ / / /2 2/ / / / /2 1 –1
15
1+1 1+2 1+1 2+3 1+3 1+1 3+4 3+6 1+4 1+1 4+5 6+10 4+10 1+5 Numerators:
1 –1
16
Numerators: 1+1 1+1 1+2 1+1 2+3 1+3 1+1 3+4 3+6 1+4
Numerators: 1 –1 Conjecture 1:
17
Conjecture 2 (corollary of Conjecture 1):
–1 Conjecture 2 (corollary of Conjecture 1):
18
1 –1 Richard Stanley
19
Richard Stanley George Andrews
1 –1 Richard Stanley Andrews’ Theorem: the number of descending plane partitions of size n is George Andrews
20
All you have to do is find a 1-to-1 correspondence between n by n alternating sign matrices and descending plane partitions of size n, and conjecture 2 will be proven! 1 –1
21
What is a descending plane partition?
All you have to do is find a 1-to-1 correspondence between n by n alternating sign matrices and descending plane partitions of size n, and conjecture 2 will be proven! 1 –1 What is a descending plane partition?
22
Percy A. MacMahon Plane Partition 1 –1 Work begun in 1897
23
Plane partition of 75 1 –1 # of pp’s of 75 = pp(75)
24
Plane partition of 75 1 –1 # of pp’s of 75 = pp(75) = 37,745,732,428,153
25
Generating function: 1 –1
26
1 –1
27
1 –1
28
1 –1
29
1912 MacMahon proves that the generating function for plane partitions in an n n n box is
–1 At the same time, he conjectures that the generating function for symmetric plane partitions is
30
Symmetric Plane Partition
1 1 1 1 –1 “The reader must be warned that, although there is little doubt that this result is correct, … the result has not been rigorously established. … Further investigations in regard to these matters would be sure to lead to valuable work.’’ (1916)
31
1971 Basil Gordon proves case for n = infinity
–1
32
1971 Basil Gordon proves case for n = infinity
–1 1977 George Andrews and Ian Macdonald independently prove general case
33
Macdonald’s observation: both generating functions are special cases of the following
1 –1 where G is a group acting on the points in B and B/G is the set of orbits. If G consists of only the identity, this gives all plane partitions in B. If G is the identity and (i,j,k) (j,i,k), then get generating function for symmetric plane partitions.
34
Does this work for other groups of symmetries?
1 –1 G = S3 ? No G = C3 ? (i,j,k) (j,k,i) (k,i,j) It seems to work.
35
Cyclically Symmetric Plane Partition
1 –1
36
Cyclically Symmetric Plane Partition
1 –1
37
Cyclically Symmetric Plane Partition
1 –1
38
Cyclically Symmetric Plane Partition
1 –1
39
Macdonald’s Conjecture (1979): The generating function for cyclically symmetric plane partitions in B(n,n,n) is 1 –1 “If I had to single out the most interesting open problem in all of enumerative combinatorics, this would be it.” Richard Stanley, review of Symmetric Functions and Hall Polynomials, Bulletin of the AMS, March, 1981.
40
1 –1 Macdonald’s Second Conjecture (1979): For every subgroup G of S3, the product on the right counts the total number of plane partitions contained in B and invariant under G. G = C3: proved by Andrews, 1979
41
1 –1 Macdonald’s Second Conjecture (1979): For every subgroup G of S3, the product on the right counts the total number of plane partitions contained in B and invariant under G. G = S3: proved by John Stembridge, 1995
42
1979, Andrews counts cyclically symmetric plane partitions
–1
43
1979, Andrews counts cyclically symmetric plane partitions
–1
44
1979, Andrews counts cyclically symmetric plane partitions
–1
45
1979, Andrews counts cyclically symmetric plane partitions
–1
46
1979, Andrews counts cyclically symmetric plane partitions
–1 L1 = W1 > L2 = W2 > L3 = W3 > … width length
47
6 6 6 4 3 3 3 2 1979, Andrews counts descending plane partitions
–1 L1 > W1 ≥ L2 > W2 ≥ L3 > W3 ≥ … 3 3 2 width length
48
6 6 6 4 3 3 3 2 What are the corresponding 6 subsets of DPP’s?
6 X 6 ASM DPP with largest part ≤ 6 What are the corresponding 6 subsets of DPP’s? 1 –1 3 3 2 width length
49
ASM with 1 at top of first column DPP with no parts of size n.
ASM with 1 at top of last column DPP with n–1 parts of size n. 1 –1 3 3 2 width length
50
Mills, Robbins, Rumsey Conjecture: # of n n ASM’s with 1 at top of column j equals # of DPP’s ≤ n with exactly j–1 parts of size n. 1 –1 3 3 2 width length
51
Mills, Robbins, & Rumsey proved that # of DPP’s ≤ n with j parts of size n was given by their conjectured formula for ASM’s. 1 –1
52
Mills, Robbins, & Rumsey proved that # of DPP’s ≤ n with j parts of size n was given by their conjectured formula for ASM’s. 1 –1 Discovered an easier proof of Andrews’ formula, using induction on j and n.
53
Used this inductive argument to prove Macdonald’s conjecture
Mills, Robbins, & Rumsey proved that # of DPP’s ≤ n with j parts of size n was given by their conjectured formula for ASM’s. 1 –1 Discovered an easier proof of Andrews’ formula, using induction on j and n. Used this inductive argument to prove Macdonald’s conjecture “Proof of the Macdonald Conjecture,” Inv. Math., 1982
54
But they still didn’t have a proof of their conjecture!
Mills, Robbins, & Rumsey proved that # of DPP’s ≤ n with j parts of size n was given by their conjectured formula for ASM’s. 1 –1 Discovered an easier proof of Andrews’ formula, using induction on j and n. Used this inductive argument to prove Macdonald’s conjecture “Proof of the Macdonald Conjecture,” Inv. Math., 1982 But they still didn’t have a proof of their conjecture!
55
1983 Totally Symmetric Self-Complementary Plane Partitions
–1 1983 Vertical flip of ASM complement of DPP ?
56
Totally Symmetric Self-Complementary Plane Partitions
1 –1
57
1 –1
58
Robbins’ Conjecture: The number of TSSCPP’s in a 2n X 2n X 2n box is
1 –1
59
Robbins’ Conjecture: The number of TSSCPP’s in a 2n X 2n X 2n box is
1 –1 1989: William Doran shows equivalent to counting lattice paths 1990: John Stembridge represents the counting function as a Pfaffian (built on insights of Gordon and Okada) 1992: George Andrews evaluates the Pfaffian, proves Robbins’ Conjecture
60
December, 1992 Doron Zeilberger announces a proof that # of ASM’s of size n equals of TSSCPP’s in box of size 2n. 1 –1
61
December, 1992 Doron Zeilberger announces a proof that # of ASM’s of size n equals of TSSCPP’s in box of size 2n. 1 –1 1995 all gaps removed, published as “Proof of the Alternating Sign Matrix Conjecture,” Elect. J. of Combinatorics, 1996.
62
1 –1 Zeilberger’s proof is an 84-page tour de force, but it still left open the original conjecture:
63
1996 Kuperberg announces a simple proof
–1 1996 Kuperberg announces a simple proof “Another proof of the alternating sign matrix conjecture,” International Mathematics Research Notices Greg Kuperberg UC Davis
64
1996 Kuperberg announces a simple proof
–1 1996 Kuperberg announces a simple proof “Another proof of the alternating sign matrix conjecture,” International Mathematics Research Notices Greg Kuperberg UC Davis Physicists have been studying ASM’s for decades, only they call them square ice (aka the six-vertex model ).
65
H O H O H O H O H O H H H H H H 1 –1
66
1 –1
67
Horizontal 1 1 –1 Vertical –1
68
southwest 1 –1 northwest southeast northeast
69
1 –1 N = # of vertical I = inversion number = N + # of NE x2, y3
70
Triangle-to-triangle relation
1960’s Rodney Baxter’s Triangle-to-triangle relation 1 –1
71
Triangle-to-triangle relation
1960’s Rodney Baxter’s Triangle-to-triangle relation 1 –1 1980’s Vladimir Korepin Anatoli Izergin
72
1 –1
73
1 –1
74
1996 Doron Zeilberger uses this determinant to prove the original conjecture 1 –1 “Proof of the refined alternating sign matrix conjecture,” New York Journal of Mathematics
75
The End 1 –1 (which is really just the beginning)
76
The End (which is really just the beginning)
1 –1 (which is really just the beginning) This Power Point presentation can be downloaded from
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.