Presentation is loading. Please wait.

Presentation is loading. Please wait.

THREE-DIMENSIONAL VIEWING

Similar presentations


Presentation on theme: "THREE-DIMENSIONAL VIEWING"— Presentation transcript:

1 THREE-DIMENSIONAL VIEWING
12 고려대학교 컴퓨터 학과 김 창 헌

2 Contents Viewing Pipeline Viewing Coordinates Projections
View Volumes and Projection Transformations Clipping Hardware Implementations 3D Viewing Functions Summary

3 Viewing Pipeline General 3D Transformation Pipeline Clipping against
Modeling Coordinates Modeling Transformation World Coordinates Viewing Transformation Viewing Coordinates Clipping against Viewing volume Projection Transformation Projection Coordinates Workstation Transformation Device Coordinates Project onto Projection plane

4 Viewing Coordinates Specifying the View Plane
Viewing-coordinate system View-plane normal vector (N) (1, 0, 0) (1, 0, 1)

5 Viewing Coordinates (con’t)
Specifying the View Plane (con’t) View-up vector (V) uvn system

6 Viewing Coordinates (con’t)
Specifying the View Plane (con’t) View-plane distance Series of views of a scene

7 Viewing Coordinates (con’t)
Transformation from WC to VC Transformation sequences 1. Translate the view reference point to the origin of the WC system 2. Apply rotations to align the xv, yv, and zv axes with the world axes Translation view reference point(x0, y0, z0)

8 Viewing Coordinates (con’t)
Transformation from WC to VC (con’t) General sequence of translate-rotate transformation Rotation rotate around the world xw axis to bring zv into the xwzw plane rotate around the world yw axis to align the zw and zv axis final rotation is about the zw axis to align the yw and yv axis

9 Viewing Coordinates (con’t)
Transformation from WC to VC (con’t) Direct generating the rotation-transformation matrix

10 Projections Parallel Projection Perspective Projection

11 Projections Parallel Projections Orthographic parallel projection
the projection is perpendicular to the view plane Oblique parallel projection

12 Projections (con’t) Parallel Projections (con’t)
Orthographic projection Isometric projection

13 12.3 Projections (con’t) Parallel Projections (con’t)
Orthographic projection coordinates

14 12.3 Projections (con’t) Parallel Projections (con’t)
Oblique projection

15 12.3 Projections (con’t) Parallel Projections (con’t)
Oblique projection

16 12.3 Projections (con’t) Parallel Projections (con’t)
Oblique projection cavalier projection ( )

17 12.3 Projections (con’t) Perspective Projections P=(x, y, z)
(xp,yp,zp) zvp zprp view plane

18 12.3 Projections (con’t) Perspective Projections (con’t)

19 12.3 Projections (con’t) Perspective Projections (con’t) zvp = 0
zprp = 0

20 12.3 Projections (con’t) Perspective Projections (con’t)
Principal vanishing point

21 View Volumes and Projection Transformation
View Window

22 View Volumes … (con’t) Parallel projection

23 View Volumes … (con’t) Perspective projection

24 View Volumes … (con’t) View volume boundary

25 View Volumes … (con’t) Changing the shape of the oblique-projection view volume

26 View Volumes … (con’t) Moving the projection reference point

27 View Volumes … (con’t) Projected object size

28 View Volumes … (con’t) Animation

29 12.4 View Volumes … (con’t) General Parallel-Projection Transformations Oblique projection view volume Regular parallelepiped view volume

30 12.4 View Volumes … (con’t) General Parallel-Projection Transformations (con’t) Projection vector Transformation

31 12.4 View Volumes … (con’t) General Parallel-Projection Transformations (con’t) General parallel-projection matrix

32 12.4 View Volumes … (con’t) General Parallel-Projection Transformations (con’t) Element Relationship

33 12.4 View Volumes … (con’t) General Perspective-Projection Transformation Perspective view volume

34 View Volumes … (con’t) General Perspective-Projection Transformation

35 View Volumes … (con’t) General Perspective-Projection Transformation (con’t)

36 Clipping Clipping Identify and save all surface segments within the view volum View-volume clipping boundary : planes

37 Clipping (con’t) Normalized View Volumes  Why? View Volume

38 Clipping (con’t) Normalized View Volumes (con’t) Pipeline

39 Clipping (con’t) Normalized View Volumes (con’t) Advantages
provides a standard shape for representing any sized view volume clipping procedures are simplified and standardized with unit cube depth cueing and visible-surface determination are simplified Mapping position within a rectangular view volume to a 3D rectangular viewport

40 Clipping (con’t) Normalized View Volumes (con’t)
Ratios of the dimensions of the viewport and view volume Translation factors

41 Clipping (con’t) Viewport Clipping 1. Parametric line equation
2. Calculation of parameter value 3. Intersection point

42 Clipping (con’t) Viewport Clipping (con’t)

43 Clipping (con’t) Clipping in Homogeneous Coordinates

44 Hardware Implementations

45 3D Viewing Functions Multiple Views Using Difference Camera Orientations

46 3D Viewing Functions (con’t)
A Wide-Angle Perspective Display Same viewing position, but with slight shifts in the viewing direction

47 Summary Modeling Coordinates Modeling Transformation World Coordinates
Viewing Transformation Viewing Coordinates Projection Transformation Projection Coordinates Workstation Transformation Device Coordinates


Download ppt "THREE-DIMENSIONAL VIEWING"

Similar presentations


Ads by Google