Presentation is loading. Please wait.

Presentation is loading. Please wait.

Algorithms and Time Complexity

Similar presentations


Presentation on theme: "Algorithms and Time Complexity"— Presentation transcript:

1 Algorithms and Time Complexity

2 Find Maximum Element int maximum(int B[],int n) { int max = B[0];
for(int j=0;j<n;j++) if(B[j] > max) max = [j]; } return max;

3 Linear Search int search(int B[],int size, int value) {
for(int j=0;j<size;j++) if(B[j] = = value) return 1; } return 0;

4 Binary Search Algorithm found = false; low = 0; high = N – 1;
while (( ! found) && ( low <= high)) { mid = (low + high)/2; if (A[mid] = = key) found = true; else if (A[mid] > key) high = mid – 1; else low = mid + 1; }

5 found = false; low = 0; high = N – 1;
while (( ! found) && ( low <= high)) { mid = (low + high)/2; if (A[mid] = = key) found = true; else if (A[mid] > key) high = mid – 1; else low = mid + 1; } 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 22 28 29 32 47 48 50 55 73 8 7 11 7 11 9 15 10 29 key = 29 Average number of comparisons ? Order of “log(N)” as compared to N.

6 Performance Comparison
NADRA database: ~80,000,000 records Computer which can perform 10,000 comparisons per second Linear search: ~2.22 hours Binary search: ~0.005 seconds Roughly 1.6 million times less

7 Performance Analysis Does the program efficiently use primary and secondary storage? Is the program’s running time acceptable for the task? Space Complexity: The space complexity of a program is the measure of the amount of memory that it needs to run to completion. Time Complexity: The time complexity of a program is the measure of the amount of computer time it needs to run to completion.

8 Performance Estimation
How to determine which algorithm is better? We need some mechanism to predict the performance without actually executing the program.

9 Example 1 – Summing of a list of numbers
#include <iostream> using namespace std; int main() { int size=10; int a[size]; for (int n =0; n < size;n++) cin >> a[n]; } int sum = 0; for (int i=0; i<size; i++) sum = sum + a[i]; cout << sum << endl; return 0; O(n))

10 Example 2 – Matrix addition
#include <iostream> using namespace std; const int row =2; const int col=3; void sum (int a[][col], int b[][col],int c[][col], int row, int col); int main() { int a[row][col]; int b[row][col]; int c[row][col]; for (int i =0; i < row;i++) { for(int j=0; j<col;j++) { cout<<"Enter values for first matrix"<<endl; cin >> a[i][j]; cout<<"Enter values for second matrix"<<endl; cin >> b[i][j]; } sum (a,b,c,row,col); { for(int j=0; j<col;j++) cout<< c[i][j]; cout<<" "; cout<<endl; return 0; void sum (int a[][col], int b[][col],int c[][col], int row, int col) c[i][j]=a[i][j]+b[i][j]; Example 2 – Matrix addition O(n2))

11 for (int i = 1; i <= 4; i++) { int sum = 0; if (i
for (int i = 1; i <= 4; i++) { int sum = 0; if (i != 4) { for (j = 1; j <= 4; j++) cin >> num; cout << num << " "; sum = sum + num; } cout << "sum = " << sum << endl; O(n2))

12 int main() { int i,j,k; for(k=1;k<=32;k++) { for(i=k;i<=30;i++) cout<<"*"; for(j=2;j<=k;j++) cout<<" "; cout<<endl; } O(n2))

13 int main() { for(int i=0; i<1;i++) { cout<<i+1<<endl; for(int j=0;j<2;j++) { cout<<j+1; } cout<<"\n"; for(int k=0; k<3; k++) { cout<<k+1; for(int l=0; l<4; l++) { cout<<l+1; for(int m=4; m>0; m--) { cout<<m; for(int o=2; o>0; o--) { cout<<o; } cout<<"\n"; for(int p=0; p<1; p++) { cout<<p+1; return 0;

14 Big Oh (O) Determining the exact step count of a program can be a very difficult task Because of the inexactness of the definition of a step, exact step count is not very useful for comparative purposes. e.g., which one is better 45n+3 or 100n+10 We use some asymptotic notations as measure of growth.

15 Big Oh (O) An estimate of how will the running time grow as a function of the problem size.

16 Big Oh (O) O(n) int search_min(int list[], int from, int to) { }
int i; int min= from; for (i=from; i<=to; i++) If (list[i] < list[min]) min = i; return min; } O(n)

17 void swap(int &a, int &b)
{ int temp=a; a = b; b = temp; } O(1)

18 Big Oh (O) O(1) - constant O(log n) - logarithmic O(n) - linear
O(n log n) - log linear O(n2) - quadratic O(n3) - cubic O(2n) - exponential

19 Big Oh (O) Summing of list of numbers Matrix addition
Searching a key in an array Binary Search O(n) O(rows.cols) O(log n)


Download ppt "Algorithms and Time Complexity"

Similar presentations


Ads by Google