Presentation is loading. Please wait.

Presentation is loading. Please wait.

Simplified Algebraic Method

Similar presentations


Presentation on theme: "Simplified Algebraic Method"— Presentation transcript:

1 Simplified Algebraic Method
Fifth European Conference of Structural Dynamics EURODYN 2002 Munich, Germany Sept , 2002 Simplified Algebraic Method for Computing Eigenpair Sensitivities of Damped System with Repeated Eigenvalues Kang-Min Choi, Graduate Student, KAIST, Korea Woon-Hak Kim, Professor, Hankyong National University, Korea In-Won Lee, Professor, KAIST, Korea

2 CONTENTS  INTRODUCTION  PREVIOUS METHODS  PROPOSED METHOD
 NUMERICAL EXAMPLES  CONCLUSIONS Structural Dynamics & Vibration Control Lab., KAIST, Korea

3 INTRODUCTION Applications of sensitivity analysis are
determination of the sensitivity of dynamic response optimization of natural frequencies and mode shapes optimization of structures subject to natural frequencies Typical structures have many repeated or nearly equal eigenvalues, due to structural symmetry. The second- and higher order derivatives of eigenpairs are important to predict the eigenpairs, which relies on the matrix Taylor series expansion. Structural Dynamics & Vibration Control Lab., KAIST, Korea

4 Problem Definition Eigenvalue problem of damped system (1)
Structural Dynamics & Vibration Control Lab., KAIST, Korea

5 Objective of this study:
Given: Find: * represents the derivative of with respect design parameter α (length, area, moment of inertia, etc.) Structural Dynamics & Vibration Control Lab., KAIST, Korea

6 PREVIOUS STUDIES Damped system with distinct eigenvalues
H. K. Jo, J. H. Lee and I. W. Lee, “Sensitivity Analysis of Non-conservative Eigensystems: Part I, Symmetric Systems,” Journal of Sound and Vibration, (submitted) (2) The coefficient matrix is symmetric and non-singular. Eigenpair derivatives are obtained simultaneously. The algorithm is simple and guarantees stability. Structural Dynamics & Vibration Control Lab., KAIST, Korea

7 Undamped system with repeated eigenvalues
R. L. Dailey, “Eigenvector Derivatives with Repeated Eigenvalues,” AIAA Journal, Vol. 27, pp , 1989. Introduction of Adjacent eigenvector Calculation derivatives of eigenvectors by the sum of homogenous solutions and particular solutions using Nelson’s algorithm Complicated algorithm and high time consumption Structural Dynamics & Vibration Control Lab., KAIST, Korea

8 Second order derivatives of Undamped system with repeated eigenvalues
M. I. Friswell, “Calculation of Second and Higher Eigenvector Derivatives”, Journal of Guidance, Control and Dynamics, Vol. 18, pp , 1995. (3) (4) where - Second eigenvector derivatives extended by Nelson’s algorithm Structural Dynamics & Vibration Control Lab., KAIST, Korea

9 PROPOSED METHOD First-order eigenpair derivatives of damped system with repeated eigenvalues Second-order eigenpair derivatives of damped system with repeated eigenvalues Numerical stability of the proposed method Structural Dynamics & Vibration Control Lab., KAIST, Korea

10 First-order eigenpair derivatives of damped system with repeated eigenvalues
Basic Equations Eigenvalue problem (5) Orthonormalization condition (6) Structural Dynamics & Vibration Control Lab., KAIST, Korea

11 Adjacent eigenvectors
(7) where T is an orthogonal transformation matrix and its order m (8) Structural Dynamics & Vibration Control Lab., KAIST, Korea

12 Rearranging eq.(5) and eq.(6) using adjacent eigenvectors
(9) (10) Structural Dynamics & Vibration Control Lab., KAIST, Korea

13 Differentiating eq.(9) w.r.t. design parameter α
(11) Pre-multiplying at each side of eq.(11) by and substituting (12) where Structural Dynamics & Vibration Control Lab., KAIST, Korea

14 Differentiating eq.(9) w.r.t. design parameter α
(13) Differentiating eq.(10) w.r.t. design parameter α (14) Structural Dynamics & Vibration Control Lab., KAIST, Korea

15 Combining eq.(13) and eq.(14) into a single equation
(15) - It maintains N-space without use of state space equation. - Eigenpair derivatives are obtained simultaneously. - It requires only corresponding eigenpair information. - Numerical stability is guaranteed. Structural Dynamics & Vibration Control Lab., KAIST, Korea

16 Second-order eigenpair derivatives of damped system with repeated eigenvalues
Differentiating eq.(13) w.r.t. another design parameter β (16) Differentiating eq.(14) w.r.t. another design parameter β (17) Structural Dynamics & Vibration Control Lab., KAIST, Korea

17 Combining eq.(16) and eq.(17) into a single equation
(18) where Structural Dynamics & Vibration Control Lab., KAIST, Korea

18 Numerical stability of the proposed method
Determinant property (19) Structural Dynamics & Vibration Control Lab., KAIST, Korea

19 Then, (20) (21) Structural Dynamics & Vibration Control Lab., KAIST, Korea

20 Using the determinant property of partitioned matrix
Arranging eq.(20) (22) Using the determinant property of partitioned matrix (23) Structural Dynamics & Vibration Control Lab., KAIST, Korea

21 Numerical Stability is Guaranteed.
Therefore (24) Numerical Stability is Guaranteed. Structural Dynamics & Vibration Control Lab., KAIST, Korea

22 NUMERICAL EXAMPLES Cantilever beam - Proportionally damped system
5-DOF mechanical system Non-proportionally damped system Structural Dynamics & Vibration Control Lab., KAIST, Korea

23 Cantilever beam (proportionally damped system)
Structural Dynamics & Vibration Control Lab., KAIST, Korea

24 First derivatives of eigenvalues Second derivatives of eigenvalues
Results of analysis (eigenvalues) Mode number Eigenvalues First derivatives of eigenvalues Second derivatives of eigenvalues 1, 2 e-03 ±j5.2496e+00 e-10 j3.5347e-10 4.3916e-09 ±j1.0285e-08 3, 4 e-02 ±j5.2494e+01 e-01 j6.1102e-02 5, 6 e-02 ±j3.2895e+01 e-10 ±j2.3445e-10 1.0084e-08 j2.4918e-09 7, 8 e+00 ±j3.2886e+02 e-08 j2.6913e+00 9, 10 e-01 ±j9.2090e+01 6.9247e-10 j6.9600e-10 ±j1.1514e-08 11, 12 e+00 ±j9.2029e+02 e+01 j1.8358e+01 Structural Dynamics & Vibration Control Lab., KAIST, Korea

25 First derivatives of eigenvectors Second derivatives of eigenvectors
Results of analysis (first eigenvectors) DOF number Eigenvectors First derivatives of eigenvectors Second derivatives of eigenvectors 1 2 3 e+05 -j6.6892e+05 3.3446e-04 +j3.3446e-04 e+03 -j5.0169e+03 4 e+04 -j2.6442e+04 1.3221e-03 +j1.3221e-03 e+02 -j1.9596e+02 77 78 79 e+02 -j1.5577e+02 7.7887e-02 +j7.7887e-02 e+00 -j1.1683e+00 80 e+03 -j2.1442e+03 1.0721e-02 +j1.0721e-02 e+01 -j1.6082e+01 Structural Dynamics & Vibration Control Lab., KAIST, Korea

26 Results of analysis (errors of approximations)
Mode number Actual Eigenvalues Approximated eigenvalues Variations of eigenpairs Errors of approximations Eigenvectors 1, 2 e-03 ±j5.2496e+00 2.2281e-11 4.9628e-03 2.2283e-11 3.7376e-05 3, 4 e-03 ±j5.3021e+00 e-03 1.0000e-02 9.9010e-03 2.6622e-08 1.0000e-04 5, 6 e-02 ±j3.2895e+01 3.7084e-12 3.6899e-12 7, 8 e-02 ±j3.3224e+01 e-02 9.9997e-04 9.9023e-03 1.6763e-07 1.0001e-04 9, 10 e-01 ±j9.2090e+01 9.1400e-12 9.1432e-12 11, 12 e-01 ±j9.3010e+01 e-01 9.9936e-03 9.9041e-03 4.6508e-07 1.0002e-04 Structural Dynamics & Vibration Control Lab., KAIST, Korea

27 5-DOF mechanical system (Non-proportionally damped system)
Structural Dynamics & Vibration Control Lab., KAIST, Korea

28 First derivatives of eigenvalues Second derivatives of eigenvalues
Results of analysis (eigenvalues) Mode number Eigenvalues First derivatives of eigenvalues Second derivatives of eigenvalues 1, 2 e-02 ±j1.5023e+00 9.6943e-07 ±j1.7995e-04 e-08 j2.4680e-07 3, 4 e-01 ±j3.4558e+00 0.0000e+00 ±j0.0000e+00 5, 6 ±j8.6811e-04 1.6409e-08 j1.4913e-07 7, 8 e-02 ±j6.1354e+00 e-07 ±j2.9526e-05 e-09 ±j1.4301e-08 9, 10 e-02 ±j9.7000e+00 e-07 ±j5.0001e-06 e-11 ±j8.4803e-10 Structural Dynamics & Vibration Control Lab., KAIST, Korea

29 First derivatives of eigenvectors Second derivatives of eigenvectors
Results of analysis (first eigenvectors) DOF number Eigenvectors First derivatives of eigenvectors Second derivatives of eigenvectors 1 1.0851e-02 -j1.0743e-02 e-07 +j4.2149e-07 3.9185e-10 -j2.7842e-10 2 1.0334e-02 -j1.0284e-02 e-07 +j5.1709e-07 5.2496e-10 -j4.2633e-10 3 9.4601e-03 -j9.5112e-03 e-07 +j6.7328e-07 7.4423e-10 -j6.7172e-10 4 0.0000e+00 +j0.0000e+00 5.4601e-06 -j6.2004e-06 e-09 +j8.1097e-09 5 e-06 +j6.2004e-06 6.5680e-09 -j8.1097e-09 Structural Dynamics & Vibration Control Lab., KAIST, Korea

30 Results of analysis (errors of approximations)
Mode number Actual Eigenvalues Approximated eigenvalues Variations of eigenpairs Errors of approximations Eigenvectors 1, 2 e-02 ±j1.5040e+00 e-02 ±j1.5041e+00 1.1893e-03 4.6721e-03 8.1631e-07 2.9463e-05 3, 4 e-01 ±j3.4558e+00 0.0000e+00 5, 6 ±j3.4645e+00 2.5039e-03 1.5461e-03 2.1632e-06 5.2014e-06 7, 8 e-02 ±j6.1357e+00 e-02 ±j6.1357e+00 4.8257e-05 1.0987e-03 1.1763e-07 2.5394e-06 9, 10 e-02 ±j9.7000e+00 5.1624e-06 1.9422e-04 4.3893e-09 1.6332e-07 Structural Dynamics & Vibration Control Lab., KAIST, Korea

31 CONCLUSIONS Proposed Method
is an efficient eigensensitivity method for the damped system with repeated eigenvalues guarantees numerical stability gives exact solutions of eigenpair derivatives can be extended to obtain second- and higher order derivatives of eigenpairs Structural Dynamics & Vibration Control Lab., KAIST, Korea

32 Thank you for your attention!
An efficient eigensensitivity method for the damped system with repeated eigenvalues Thank you for your attention! Structural Dynamics & Vibration Control Lab., KAIST, Korea


Download ppt "Simplified Algebraic Method"

Similar presentations


Ads by Google