Download presentation
Presentation is loading. Please wait.
1
A Survey on State Feedback AMD Control
ICSSD 2000 A Survey on State Feedback AMD Control Kyu-Hong Shim: Postdoctoral Researcher, KAIST Dong-Hyawn Kim: Postdoctoral Researcher,KAIST Kyu-Sik Park: Doctoral Candidate, KAIST In-Won Lee: Professor, KAIST
2
Table of Contents State Feedback Control Numerical Example
Introduction State Feedback Control Numerical Example Conclusions Structural Dynamics & Vibration Control Lab., KAIST, Korea
3
Introduction Optimal Feedback Control X _ u G .. Structure xg X: state
xg: ground accel. G: optimal gain u: control force .. Further reduction of vibration is impossible ! Structural Dynamics & Vibration Control Lab., KAIST, Korea
4
Previous Studies • Spencer Jr. et al. (1996)
- made experimental model of three-story building. - developed simulation program for benchmark. • Chase and Smith (1999) - solved actuator saturation problem. - implemented it for real building in Tokyo, Japan. • Wu and Soong (1994) - studied Bang-Bang control to reduce peak-response. Structural Dynamics & Vibration Control Lab., KAIST, Korea
5
Pole Placement Control
• Advantage : can speed up response reduction. • Drawback : more power may be consumed. • Remark : powerful actuator is needed. Pole placement control has not been studied yet. Structural Dynamics & Vibration Control Lab., KAIST, Korea
6
Apply pole placement control to a building structure.
Objective Apply pole placement control to a building structure. Compare it with optimal control. Structural Dynamics & Vibration Control Lab., KAIST, Korea
7
State Feedback Control
Equation of Motion (1) : mass matrix : damping matrix : stiffness matrix : actuator vector : displacement : ground accel. : control force : direction of earthq. Structural Dynamics & Vibration Control Lab., KAIST, Korea
8
State Space Equation (2) (3), (4) (5), (6)
Structural Dynamics & Vibration Control Lab., KAIST, Korea
9
Optimal Control Minimizing Cost (7) Feedback Rule (8) Riccati Equation
(9) Structural Dynamics & Vibration Control Lab., KAIST, Korea
10
Sub-Optimal Control Pole Placement (10) (11) (12)
Structural Dynamics & Vibration Control Lab., KAIST, Korea
11
Numerical Example < Three Story Building with AMD >
Structural Dynamics & Vibration Control Lab., KAIST, Korea
12
Parameters Structure AMD
mass : kg (story) stiffness : 105 N/m (inter-story) damping ratios : 0.6, 0.7, 0.3% (modal) AMD mass : kg (3% of building total mass) stiffness : 103 N/m damping ratio : % Structural Dynamics & Vibration Control Lab., KAIST, Korea
13
• Excitation input: El Centro earthquake • Sub-optimal gains: and
• Weighting matrices: Structural Dynamics & Vibration Control Lab., KAIST, Korea
14
Free Vibration of Third Floor
Structural Dynamics & Vibration Control Lab., KAIST, Korea
15
Earthquake Response of Third Floor
Structural Dynamics & Vibration Control Lab., KAIST, Korea
16
Free Vibration of AMD Structural Dynamics & Vibration Control Lab., KAIST, Korea
17
Earthquake Response of AMD
Structural Dynamics & Vibration Control Lab., KAIST, Korea
18
Conclusions • Optimal control(Gopt) and pole placement
control(0.5Gopt) showed the same responses. • Therefore, pole placement is better than optimal control because pole placement requires smaller control force. Structural Dynamics & Vibration Control Lab., KAIST, Korea
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.