Download presentation
Presentation is loading. Please wait.
1
Low Emittance Lattices
Alex Bogacz, Geoff Krafft and Timofey Zolkin USPAS, Fort Collins, CO, June 10-21, 2013
2
Outline Synchrotron radiation optimizations
Equilibrium emittance and storage ring lattice design Emittance preserving lattices Low emittance lattices, Natural emittance examples: FODO Lattice Double/Triple Bend Achromat Lattices (DBA, TBA ) Theoretical Minimum Emittance Lattice TME. M. Sands, “The physics of electron storage rings, an introduction” SLAC A. Wolski, University of Liverpool and the Cockcroft Institute, CAS 2009, USPAS, Fort Collins, CO, June 10-21, 2013
3
Radiation Damping Re-cap
In the previous lecture we have: discussed the effect of synchrotron radiation on the (linear) motion of particles in storage rings; derived expressions for the damping times of the vertical, horizontal and longitudinal emittances; discussed the effects of quantum excitation, and derive expressions for the equilibrium horizontal and longitudinal beam emittances in an electron storage ring. USPAS, Fort Collins, CO, June 10-21, 2013
4
Synchrotron Radiation Integrals Re-cap
USPAS, Fort Collins, CO, June 10-21, 2013
5
Sand’s Integrals Re-cap
USPAS, Fort Collins, CO, June 10-21, 2013
6
Lattice Examples Practical implementations: FODO
DBA (double-bend achromat) multi-bend achromat, including the triple-bend achromat (TBA) TME (theoretical minimum emittance) USPAS, Fort Collins, CO, June 10-21, 2013
7
Calculating the natural emittance in a lattice
USPAS, Fort Collins, CO, June 10-21, 2013
8
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
9
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
10
FODO lattice - natural emittance
1 USPAS, Fort Collins, CO, June 10-21, 2013
11
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
12
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
13
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
14
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
15
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
16
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
17
FODO lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
18
DBA lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
19
DBA lattice - natural emittance
1 USPAS, Fort Collins, CO, June 10-21, 2013
20
DBA lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
21
DBA lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
22
DBA lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
23
DBA lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
24
TME lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
25
TME lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
26
TME lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
27
TME lattice - natural emittance
USPAS, Fort Collins, CO, June 10-21, 2013
28
Summary: FODO, DBA and TME lattices
USPAS, Fort Collins, CO, June 10-21, 2013
29
Design for low emittance lattices
USPAS, Fort Collins, CO, June 10-21, 2013
30
1350 FODO Cell 50.5 GeV phase adv/cell: Dfx,y= 1350 Arc dipoles:
$Lb=400 cm $B=2.2 kGauss $ang=0.3 deg. $rho = 764 meter Arc quadrupoles $Lq=100 cm $G= 1.2 kG/cm USPAS, Fort Collins, CO, June 10-21, 2013
31
〈H〉 averaged over bends
1350 FODO Cell Emittance dispersion 〈H〉 averaged over bends Momentum compaction USPAS, Fort Collins, CO, June 10-21, 2013
32
Quasi-isochronous FMC Cell
Emittance dispersion 〈H〉avereged over bends Momentum compaction factor of 2.5 smaller than FODO factor of 27 smaller than FODO USPAS, Fort Collins, CO, June 10-21, 2013
33
Arc Optics – 1350 FODO vs FMC Cell
USPAS, Fort Collins, CO, June 10-21, 2013
34
FMC ‘Imaginary gt’ Cell
50.5 GeV second stability region: Dfx,y > 1800 Arc dipoles: $Lb=400 cm $B=2.2 kGauss $ang=0.3 deg. $rho = 764 meter Arc quadrupoles $G0= kG/cm $G1= 5.06 kG/cm $G2= kG/cm $G3= 5.07 kG/cm USPAS, Fort Collins, CO, June 10-21, 2013
35
FMC ‘Double Bend Achromat’ Cell
50.5 GeV second stability region: Dfx > 1800 Arc dipoles: $Lb=400 cm $B=2.2 kGauss $ang=0.3 deg. $rho = 764 meter Arc quadrupoles $G0= 2.05 kG/cm $G1= 2.90 kG/cm $G2= kG/cm $G3= 2.97 kG/cm USPAS, Fort Collins, CO, June 10-21, 2013
36
FMC ‘Theoretical Emittance Minimum’ Cell
50.5 GeV second stability region: Dfx > 1800 Arc dipoles: $Lb=400 cm $B=2.2 kGauss $ang=0.3 deg. $rho = 764 meter Arc quadrupoles $G0= 2.92 kG/cm $G1= 2.89 kG/cm $G2= kG/cm $G3= 2.97 kG/cm USPAS, Fort Collins, CO, June 10-21, 2013
37
Emittance growth due to quantum excitations
USPAS, Fort Collins, CO, June 10-21, 2013
38
Highest Arc Optics – Emittance growth
50.5 GeV, g = 105 TEM-like Optics emittance increase (last arc): DexN = 4.5 mm rad ( total emittance increase (all 6 arcs): DexN = 1.25 × 4.5 mm rad =5.6 mm rad USPAS, Fort Collins, CO, June 10-21, 2013
39
Arc Optics – Cumulative emittance growth
Arc 1 , Arc2 Arc 3 Arc 4 , Arc5 Imaginary gt Optics DBA-like Optics TEM-like Optics total emittance increase (all 5 arcs): DexN = 1.25 × 4.5 mm rad =5.6 mm rad USPAS, Fort Collins, CO, June 10-21, 2013
40
Arc Optics – FMC vs 1350 FODO 50.5 GeV, g = 105 FMC
Normalized emittance increase: DexN = 3.1 e-05 m rad (Dex = 0.3 nm rad ) 1350 FODO Normalized emittance increase: DexN = 7.9 e-05 m rad (Dex = 0.8 nm rad ) USPAS, Fort Collins, CO, June 10-21, 2013
41
Emittance dilution - quantum excitations
42
Equillibrium emittance - quantum excitations
43
Summary USPAS, Fort Collins, CO, June 10-21, 2013
44
Summary cont. USPAS, Fort Collins, CO, June 10-21, 2013
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.