Presentation is loading. Please wait.

Presentation is loading. Please wait.

Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr.

Similar presentations


Presentation on theme: "Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr."— Presentation transcript:

1 Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr

2 Subdivision How do You Make a Smooth Curve? cgvr.korea.ac.kr

3 Subdivision Surfaces Coarse Mesh & Subdivision Rule
Define smooth surface as limit of sequence of refinements cgvr.korea.ac.kr

4 Key Questions How Refine Mesh? How Store Mesh?
Aim for properties like smoothness How Store Mesh? Aim for efficiency for implementing subdivision rules cgvr.korea.ac.kr

5 Loop Subdivision Scheme
How Refine Mesh? Refine each triangle into 4 triangles by splitting each edge and connecting new vertices cgvr.korea.ac.kr

6 Loop Subdivision Scheme
How Position New Vertices? Choose locations for new vertices as weighted average of original vertices in local neighborhood cgvr.korea.ac.kr

7 Loop Subdivision Scheme
Different Rules for Boundaries: cgvr.korea.ac.kr

8 Loop Subdivision Scheme
Limit Surface Has Provable Smoothness Properties cgvr.korea.ac.kr

9 Subdivision Schemes There are different subdivision schemes
Different methods for refining topology Different rules for positioning vertices Interpolating versus approximating Face Split Vertex Split Triangular Meshes Quad. Meshes Doo-Sabin, Midege (C1) Approximating Loop (C2) Catmull-Clark (C2) Biquartic (C2) Interpolating Mod. Butterfly (C1) Kobbelt (C1) cgvr.korea.ac.kr

10 Subdivision Schemes Loop Butterfly Catmull-Clark Doo-Sabin
cgvr.korea.ac.kr

11 Subdivision Schemes Loop Butterfly Catmull-Clark Doo-Sabin
cgvr.korea.ac.kr

12 Key Questions How Refine Mesh? How Store Mesh?
Aim for properties like smoothness How Store Mesh? Aim for efficiency for implementing subdivision rules cgvr.korea.ac.kr

13 Polygon Meshes Mesh Representations Independent faces
Vertex and face tables Adjacency lists Winged-Edge cgvr.korea.ac.kr

14 Independent Faces Each Face Lists Vertex Coordinates
Redundant vertices No topology information (x4, y4, z4) (x3, y3, z3) F2 F3 F1 (x5, y5, z5) (x2, y2, z2) (x1, y1, z1) Face Table F1 F2 F3 (x1, y1, z1) (x2, y2, z2) (x3, y3, z3) (x2, y2, z2) (x4, y4, z4) (x3, y3, z3) (x2, y2, z2) (x5, y5, z5) (x4, y4, z4) cgvr.korea.ac.kr

15 Vertex & Face Tables Each Face Lists Vertex References Shared vertices
Still no topology information (x4, y4, z4) (x3, y3, z3) F2 F3 F1 (x5, y5, z5) (x2, y2, z2) (x1, y1, z1) Vertex Table Face Table V1 V2 V3 V4 V5 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 F1 F2 F3 V1 V2 V3 V2 V4 V3 V2 V5 V4 cgvr.korea.ac.kr

16 Adjacency Lists Store all Vertex, Edge, and Face Adjacencies
Efficient topology traversal Extra storage V2 V4 V3 V2 V3 E5 E4 E3 E1 E4 E2 E5 E6 V4 E4 V3 F3 F1 F1 F2 F2 E7 E3 E1 E5 F3 F1 V5 V2 E6 V1 E2 V5 V4 V3 V1 E6 E5 E3 E2 F3 F2 F1 cgvr.korea.ac.kr

17 Winged Edge Adjacency Encoded in Edges All adjacencies in O(1) time
Little extra storage (fixed records) Arbitrary polygons {Fi} {Vi} {Ei} 1 2 4 v1 v2 f1 f2 e21 e22 e11 e12 cgvr.korea.ac.kr

18 Winged Edge Example (x4, y4, z4) (x3, y3, z3) F2 F3 F1 (x5, y5, z5)
Vertex Table Edge Table Face Table V1 V2 V3 x1, y1, z1 x2, y2, z2 x3, y3, z3 x4, y4, z4 x5, y5, z5 E1 E6 E3 E5 E1 E2 E3 E4 E5 E6 E7 V1 V3 V1 V2 V2 V3 V3 V4 V2 V4 V2 V5 V4 V5 E2 E2 E4 E3 E1 E1 E3 E6 E2 E5 E1 E4 E1 E3 E7 E5 E3 E6 E4 E7 E5 E2 E7 E7 E4 E5 E6 E6 F1 F2 F3 e1 e3 e5 cgvr.korea.ac.kr

19 Summary Advantages: Difficulties:
Simple method for describing complex surfaces Relatively easy to implement Arbitrary topology Smoothness guarantees Multiresolution Difficulties: Intuitive specification Parameterization Intersections cgvr.korea.ac.kr


Download ppt "Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr."

Similar presentations


Ads by Google