Download presentation
Presentation is loading. Please wait.
Published byRiitta Laine Modified over 5 years ago
1
Fuzzy Color Histogram and Its Use in Color Image retrieval
Author: Ju Han and Kai-Kuang Ma Source: IEEE Trans. Image Processing, Vol. 11, No. 8, pp , 2002 Date: 2004/4/21 Adviser: Dr. Chin-Chen Chang Speaker: Hao-Yu Lo 2004/4/21
2
Outline Conclusions The conventional color histogram (CCH)
The proposed method fuzzy color histogram(FCH) Experimental results (CCH)和(FCH)的目的都是做image retrieval。 Color histogram在這篇paper被視為顏色分佈的機率。 2004/4/21
3
Conclusions A new color histogram representation called fuzzy color histogram (FCH)was proposed. FCH is less sensitive than CCH on dealing with lighting intensity changes and region of interest image retrieval. 2004/4/21
4
conventional color histogram(CCH)
H(I)=[h1, h2, …, hn], where hi=Ni /N (R,G,B) image I b r w y o g 用CCH表示一張圖,H(I)=[h1, h2, …, hn]。 N: total pixels in image I。n: color bins in color space。hi=Ni /N 2004/4/21
5
fuzzy color histogram(FCH)
F(I)=[f1, f2, …, fc], where input pixels fuzzy c-mean(FCM) cluster algorithm fi pixels x x x x4………….. xN ij membership ………….. 0.5 value of f1 Pj指的就是,從image I裡選出來的第j個pixel,(據理解,每個pixel被選到的機率都是1/16)。 ij指的是,第j個pixel在第i個bin的隸屬度。 membership ………… 0.4 value of f2 . . . . . . 2004/4/21 1 1 1 1 1
6
Example of fuzzy c-mean(FCM) cluster algorithm(1/3)
Initialize two cluster’s center v1=(166,169,189) v2=(120,123,124) t=1 X1=(186, 185, 197) X2=(162, 142, 165) X3=(206, 208, 209) X4=(142, 131, 160) f1 11=0.4 12 =0.7 1 3 =0.2 14 =0.6 f2 21 =0.6 22 =0.3 23 =0.8 24 =0.4 ij i j (1/||xj-vi||2)1/(m-1) , i=1,2; j=1,2,3,4 ( ) 1 1/2-1 11= ( ) ( ) 1 1/2-1 1 1/2-1 f1(1)=( )/4, f2(1)=( )/4 F(1)=(1.9/4, 2.1/4) 2004/4/21
7
Example of fuzzy c-mean(FCM) cluster algorithm(2/3)
Compute new two cluster’s center v1(1)=(163,165,168) v2 (1) =(118,121,125) N ij j j N ij j t=2 X1=(186, 185, 197) X2=(162, 142, 165) X3=(206, 208, 209) X4=(142, 131, 160) f1 11=0.5 12 =0.67 1 3 =0.26 14 =0.55 f2 21 =0.5 22 =0.33 23 =0.74 24 =0.45 f1(2)=( )/4, f2(2)=( )/4 F(2)=(1.98/4, 2.02/4) 2004/4/21
8
Example of fuzzy c-mean(FCM) cluster algorithm(3/3)
Iteration until ||F(t)-F(t-1)||<,stop. else, t=t+1 f1(5)=( )/4=1.99/4, f2(5)=( )/4=2.01/4 F(5)=(1.99/4, 2.01/4) f1(6)=( )/4=2/4, f2(6)=( )/4=2/4 F(6)=(2/4, 2/4) stop. v1(6)=(140,162,171), v2 (6)=(185,193,204) 2004/4/21
9
fuzzy c-mean(FCM) weighting exponent m, and error tolerance .
Step1) Input the number of clusters c, the weighting exponent m, and error tolerance . Step2) Initialize the cluster centers V={vi}, for 1 i c. Step3) Input data X={x1, x2, …,xN}. Step4) Calculate the c cluster centers V={vi (t)}. Step5) Update new F={f1, f2,…, fc,} Step6) If ||F(t)-F(t-1)||<,stop. else, t=t+1,return to step 4 有效計算 FCH的方法,是一個架構在fuzzy c-mean(FCM)的clustering演算法。介紹fuzzy c-mean在幹嘛。 2004/4/21
10
Experimental results(1/2)
vary lighting intensity from –25, -20, ……,+20, +25 解釋rank的定義。 2004/4/21
11
Experimental results(2/2)
retrieved images by using CCH retrieved images by using FCH 解釋為什麼要做regional retrieval。 2004/4/21 retrieved images by using CCH retrieved images by using FCH
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.