Download presentation
Presentation is loading. Please wait.
1
, t, F distributions
2
distribution t distribution F distribution 2
3
You don’t need to care about complicated math formula.
Just see, and remember only what I marked with
4
iid = independent and identically distributed
★ Random sample (r.s.) : A sample which are collected by independent sampling procedure from an identically distributed population. iid = independent and identically distributed
5
X\Y 1 2 T 1/16 1/8 1/4 1/2 1.0 X\Y 1 2 T 1/12 1/4 1/6 1/2 1/3 1.0 X\Y 1 2 3 T 1/16 1/8 1/4 1/2 1.0 X\Y 1 2 T 1/4 1/2 1.0
6
are (mutually) independent (a)
are iid are (mutually) independent (a) (b) 6
7
7
8
8
9
9
10
: degree of freedom ( a parameter, related to number of var’s)
10
11
11
13
13
14
★ 14
15
★ 15
16
 2 ; n  2 ; n 1 3 5 8 15 24 ∞ 0.975 0.001 0.216 0.831 2.180 6.262 12.401 0.95 0.004 0.352 1.145 2.733 7.261 13.848 0.05 3.841 7.815 11.071 15.507 24.996 36.415 0.025 5.024 9.348 12.833 17.535 27.488 39.364 ∞ ∞ ∞
17
For large 17
18
Lorentzian Laplacian Normal Cauchy Double Expon. Gaussian
19
-4 -2 2 4 0.0 0.1 0.2 0.3 0.4 0.5
20
Louis F. Cauchy (1760–1848) Hendrik A. Lorentz (1853–1928)
21
21
22
: degree of freedom ( a parameter, related to number of var’s)
22
23
★ 23
24
★ Cauchy N(0,1) N(0,1) t(30) t(1) t(1), t(2), t(4), t(30) t(1) t(1)
t(n t(n ) ) t( t( ∞ ∞ ) ) Cauchy N(0,1) 0.4 N(0,1) t(30) 0.3 0.2 t(1) 0.1 0.0 -4 -2 2 4 t(1), t(2), t(4), t(30)
25
0.3 1.0 0.8 0.2 0.6 0.4 0.1 0.2 0.0 0.0 -15 -10 -5 5 10 15 -15 -10 -5 5 10 15 1 3 8 15 21 23 ∞ 0.10 3.078 1.638 1.397 1.341 1.323 1.319 1.282 0.05 6.314 2.353 1.860 1.753 1.721 1.714 1.645 0.025 12.706 3.182 2.306 2.131 2.080 2.069 1.96
26
Student (1908), The probable error of a mean. Biometrika, 6-1, 1-25.
William Sealy Gosset ( ) Student (1908), The probable error of a mean. Biometrika, 6-1, 1-25.
28
: degree of freedom 28
29
Variance of F distribution is complicated.
for large Variance of F distribution is complicated. You don’t need to care about these. 29
30
Most of cases the center of dist’n is near 1.
1 2 3 4 5 6 0.0 0.5 1.0 1.5 Most of cases the center of dist’n is near 1.
31
George W. Snedecor ( ) R. A. Fisher (1890 –1962)
32
32
34
1 2 3 4 5 6 7 0.1 0.3 0.5 0.7
35
1 2 6 8 9 15 161.45 18.513 5.987 5.318 5.117 4.543 199.50 19.000 5.143 4.459 4.256 3.682 233.99 19.330 4.284 3.581 3.374 2.790 238.88 19.371 4.147 3.438 3.230 2.641 240.54 19.385 4.099 3.388 3.179 2.588 245.95 19.429 3.938 3.218 3.006 2.403 1 2 6 8 9 15 647.79 38.506 8.813 7.571 7.209 6.200 799.50 39.000 7.260 6.059 5.715 4.765 937.11 39.331 5.820 4.652 4.320 3.415 956.66 39.373 5.600 4.433 4.102 3.199 963.29 39.387 5.523 4.357 4.026 3.123 984.87 39.431 5.269 4.101 3.769 2.862
36
★ 36
37
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0.358 3.94 0.254 2.79
38
38
39
-4 -2 2 4 2 4 6 8 -2.447 2.447
40
Thank you !!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.