Presentation is loading. Please wait.

Presentation is loading. Please wait.

Operations Management Dr. Ron Lembke

Similar presentations


Presentation on theme: "Operations Management Dr. Ron Lembke"— Presentation transcript:

1 Operations Management Dr. Ron Lembke
FORECASTING Operations Management Dr. Ron Lembke

2 New Housing Starts Who cares? How predict?

3 Naïve Forecast Error Avg Error (14 mos)= -0.4 Avg Error (55 yrs)= 0.02
Month Total Naïve Error Jan 1959 96.2 Feb 1959 99.0 2.8 Mar 1959 127.7 28.7 Apr 1959 150.8 23.1 May 1959 152.5 1.7 Jun 1959 147.8 -4.7 Jul 1959 148.1 0.3 Aug 1959 138.2 -9.9 Sep 1959 136.4 -1.8 Oct 1959 120.0 -16.4 Nov 1959 104.7 -15.3 Dec 1959 95.6 -9.1 Jan 1960 86.0 -9.6 Feb 1960 90.7 4.7 Avg Error (14 mos)= -0.4 Avg Error (55 yrs)= 0.02

4 Mean Error of 0 That’s good! not perfect. Just unbiased

5  =0.3

6  =0.5 Tracking Signal

7 TAF a=0.2, beta=0.5

8 Scenario 3a R2=

9 Deseasonalized Van Usage

10 New Housing Deseasonalized
Avg SF 87.14 0.723 90.18 0.749 120.39 0.999 136.78 1.135 142.19 1.180 141.01 1.171 135.07 1.121 133.71 1.110 126.56 1.051 130.88 1.086 109.19 0.906 92.52 0.768 120.47 1.00

11 TAF with Seasonality

12 Housing-Selecting Data
A>F A<F

13 1. Seasonal Factors 2009 2010 2011 2012 2013 2014 2015 Avg SF Jan 31.9
38.9 40.2 47.2 58.7 60.7 73.0 50.1 0.776 Feb 39.8 40.7 35.4 49.7 66.1 65.1 61.9 51.2 0.794 Mar 42.7 54.7 49.9 58.0 83.3 80.2 79.7 64.1 0.993 Apr 42.5 62.0 49.0 66.8 76.3 94.9 108.5 71.4 1.107 May 52.2 56.2 54.0 67.8 87.2 92.5 99.6 72.8 1.128 June 59.1 53.8 60.5 74.7 80.7 87.3 112.7 75.5 1.171 July 56.8 51.5 57.6 69.2 84.0 101.0 112.3 76.1 1.179 Aug 52.9 56.3 54.5 69.0 80.4 86.2 66.6 1.032 Sept 52.6 53.0 58.8 75.8 78.4 94.2 68.8 1.066 Oct 44.5 45.4 53.2 77.0 92.0 1.009 Nov 42.3 40.6 62.2 83.8 59.6 0.924 Dec 36.6 33.8 63.2 67.6 73.4 0.820 64.51

14 2. Deseasonalize Month Starts SF Deseas Jan 2009 31.9 0.776 41.1
Feb 2009 39.8 0.794 50.1 Mar 2009 42.7 0.993 43.0 Apr 2009 42.5 1.107 38.4 May 2009 52.2 1.128 46.3 Jun 2009 59.1 1.171 50.5 Jul 2009 56.8 1.179 48.2 Aug 2009 52.9 1.032 51.3 Sep 2009 52.6 1.066 49.3 Oct 2009 44.5 1.009 44.1 Nov 2009 42.3 0.924 45.8 Dec 2009 36.6 0.820 44.6

15 3. Linear Regression

16 4. Project Forward F(t) = t*0.69

17 5. Seasonalize

18 Summary Calculate seasonal relatives Deseasonalize Do a LR
Divide actual demands by seasonal relatives Do a LR Project the LR into the future Seasonalize Multiply straight-line forecast by relatives


Download ppt "Operations Management Dr. Ron Lembke"

Similar presentations


Ads by Google