Download presentation
Presentation is loading. Please wait.
1
ASV Chapters 1 - Sample Spaces and Probabilities
2 - Conditional Probability and Independence 3 - Random Variables 4 - Approximations of the Binomial Distribution 5 - Transforms and Transformations 6 - Joint Distribution of Random Variables - cont’d 7 - Sums and Symmetry 8 - Expectation and Variance in the Multivariate Setting 9 - Tail Bounds and Limit Theorems 10 - Conditional Distribution 11 - Appendix A, B, C, D, E, F
2
... DISCRETE random variables X, Y Joint Probability Mass Function y1
… yc X x1 p(x1, y1) p(x1, y2) ... p(x1, yc) x2 p(x2, y1) p(x2, y2) p(x2, yc) xr p(xr, y1) p(xr, y2) p(xr, yc)
3
... DISCRETE random variables X, Y Joint Probability Mass Function y1
… yc X x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) p(x2, yc) pX (x2) xr p(xr, y1) p(xr, y2) p(xr, yc) pX (xr) pY (y1) pY (y2) pY (yc) 1
4
Y = X =
5
X and Y are not independent!
Probabilities… X and Y are not independent!
6
X and Y are not independent!
Probabilities… X and Y are not independent! cdf
7
X and Y are not independent!
Probabilities… X and Y are not independent! cdf
8
Cumulative Probability
X = Event T = t Outcomes (AM, PM) Probability Cumulative Probability 2 (1, 1) .25 3 (1, 2), (2, 1) .45 = .70 = 4 (1, 3), (2, 2) .25 = .95 = 5 (2, 3) .05 1.00 =
9
... DISCRETE random variables X, Y Joint Probability Mass Function y1
… yc X x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) p(x2, yc) pX (x2) xr p(xr, y1) p(xr, y2) p(xr, yc) pX (xr) pY (y1) pY (y2) pY (yc) 1
10
... CONTINUOUS random variables X, Y
Joint Probability Density Function Joint Probability Mass Function Y y1 y2 … yc X x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) p(x2, yc) pX (x2) xr p(xr, y1) p(xr, y2) p(xr, yc) pX (xr) pY (y1) pY (y2) pY (yc) 1
11
Joint Probability Density Function
CONTINUOUS Joint Probability Density Function Volume under density f(x, y) over A. “area element” Area A
12
... Corollary ~ CONTINUOUS random variables X, Y
Joint Probability Density Function Joint Probability Mass Function Y y1 y2 … yc X x1 p(x1, y1) p(x1, y2) ... p(x1, yc) pX (x1) x2 p(x2, y1) p(x2, y2) p(x2, yc) pX (x2) xr p(xr, y1) p(xr, y2) p(xr, yc) pX (xr) pY (y1) pY (y2) pY (yc) 1 Corollary ~ If X and Y are independent, then the joint cdf satisfies Proof: Exercise
13
Extension to multiple random variables X1, X2, X3,…, Xn
For simplicity, take n = 3: Discrete Continuous (e.g, Multinomial distribution)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.