Presentation is loading. Please wait.

Presentation is loading. Please wait.

Molecularly imprinted polymers

Similar presentations


Presentation on theme: "Molecularly imprinted polymers"— Presentation transcript:

1 Molecularly imprinted polymers
From natural receptors to synthetic receptors Tereza Vaněčková Laboratory of Bioanalysis and Imaging Department of Chemistry and Biochemistry Mendel University in Brno

2 Motivation Natural systems are outstanding in terms of
recognition and regeneration But: limited robustness, sometimes high cost. Therefore: Implement biological functionality into artificial materials.

3 Motivation MIP „Antibody mimics“ -> Molecularly Imprinted Polymers
Number of articles related to Molecularly imprinted polymers (ref. Web of Science)

4 template monomer What are Molecularly Imprinted Polymers (MIPs)?
washing template removal polymer a MIP application of sample detection washing = target/template = competitors Eersels K., Lieberzeit P., Wagner P. ACS Sensors, 1, 1171 (2016).

5 What are MIPs used for? Analytical separations
Solid phase extraction (SPE) Chemical sensors Environmental analysis Bioanalysis Food analysis Preparative separation Substrate Therapeutics Drug delivery Blood purification Chen L., Xu S., Li J. Chemical Society Reviews, 40, 2922 (2011)

6 fluorescence spectroscopy
Design of molecularly imprinted polymers ANALYTE/ TEMPLATE Acrylamide Acrylic acid fluorescence spectroscopy DETECTION MS microscopy electrochemistry QCM SURFACE MONOMER Dopamine Methacrylic acid

7 Interactions leading to MIP
Target-shaped cavities Non-covalent interactions Hydrogen bonds Van der Waals π-π interactions Dipolar bonding Zimmerman, S., et al. Chem. Commun., 5-14 (2004).

8 Imprinting techniques
Surface imprinting Self-assembly monolayer Stamping Molding = target/template = competitors 8 Eersels K., Lieberzeit P., Wagner P. ACS Sensors, 1, 1171 (2016).

9 Imprinting strategies
WHOLE PROTEIN/CELL PEPTIDE 9 Lu C.-H., et al. Biosensors and Bioelectronics, 31, 439 (2012).

10 Experimental part dopamine MS optical TEMPLATE MONOMER
POLYDOPAMINE MIPs SELF-ASSEMBLY MONOLAYER Easy preparation process Oxidative polymerization under alkaline conditions (solvent Tris-HCl) SURFACE DETECTION MS optical Polymerization of dopamine 10

11 Experimental part template monomer polymer template removal
DOPAMINE + Tris-HCl buffer (20 mM, pH 8.5) template monomer ACETIC ACID 3% polymer template removal 17 h application of sample 1 hour WATER detection washing 11

12 Concentration of fluorescein in sample[M]
Results TEMPLATE fluorescein 332.3 Da MONOMER SURFACE microplate DETECTION fluorescence spectroscopy dopamine Optimization of: Dopamine concentration (2,5 mg/ml) Template concentration (1*10-4 M) Polymerization time - 3-fold decrease using laboratory dryer (50°C) Fluorescence intensity [a.u.] 1000 900 800 700 600 500 400 300 200 100 λex=490 nm λem=520 nm NIP MIP 1*10-4 1*10-5 1*10-6 Concentration of fluorescein in sample[M] * Note: MIP = Molecularly Imprinted Polymer NIP = Non-Imprinted Polymer (control)

13 Results NIP MIP lysozyme dopamine microplate fluorescence 2002 Da
TEMPLATE lysozyme 2002 Da MONOMER SURFACE microplate DETECTION fluorescence spectroscopy dopamine 1200 Dopamine concentration (2,5 mg/ml) Fluorescence intensity (λ 330 nm) [a.u.] λex=280 nm λem=330 nm NIP MIP 1000 Template concentration (2,5 mg/ml) 800 600 400 200 0.5 albumin 0.1 mg/ml Lysozyme concentration [mg/ml]

14 Results metallothionein dopamine Zn66 6-7 kDa microscope glass slide
TEMPLATE metallothionein 6-7 kDa MONOMER dopamine SURFACE microscope glass slide DETECTION LA-ICP-MS Laser Ablation Inductively Coupled Plasma Mass Spectrometry Zn66 MIP (sample MT3) - Zn66 NIP MIP 1000 Relative intensity [cps] 800 600 400 200 Dopamine concentration (2,5 mg/ml) Template concentration (1,315 mg/ml) 1 2 Repetitions 3 Sample 1,315 mg/ml

15 Results Cd quantum dots dopamine ~5 nm microscope glass slide
TEMPLATE quantum dots ~5 nm MONOMER dopamine SURFACE microscope glass slide DETECTION LA-ICP-MS optical LA-ICP-MS OPTICAL fluorescence camera λex=470 nm, λem=535 nm Cd 1000 900 800 700 600 500 400 300 200 100 Relative intensity [cps] NIP Relative intensity [cps] Fluorescence intensity [a.u.] NIP MIP MIP 1 2 Repetitions 3

16 Staphylococcus aureus
Results TEMPLATE Staphylococcus aureus ø 0,5-1 µm MONOMER SURFACE microplate DETECTION fluorescence microscopy dopamine 25 Fluorescence intensity [a.u.] NIP MIP 20 15 10 5 Staining: propidium iodide λex= nm λem=610 nm Magnification: 100x NIP MIP

17 Conclusion Advantages Easy preparation, inexpensive
Can be prepared for practically any compound High binding capacity (comparable to natural receptors) Satisfactory selectivity for the template Stable at low/high pHs, pressure, temperature Attractive in biotechnology and biosensors Disadvantages Low repeatability (10-20% standard deviation) Importance of optimization

18 Future prospects Detection of biomolecules
Pathogens: viruses (eg. zika), bacteria Nano-MIP – molecularly imprinted polymers on the surface of nanoparticles (magnetic nanoparticles, quantum dots, upconversion nanoparticles) Lab-on-paper – paper-based colorimetric analytical device based on MIP Liu, W., et al. A molecularly imprinted polymer based a lab-on-paper chemiluminiscence device for the detection of dichlorvos. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 141:

19 Acknowledgements Supervised by Mgr. Markéta Vaculovičová, Ph.D.
Cooperations: Students: Jitka Hutařová (Master thesis) Dr. Vaculovič, Masaryk University, Brno Prof. Lieberzeit, University of Vienna, AT Aneta Štossová (Bachelor thesis) Funding:

20 Thank you for your attention!
20


Download ppt "Molecularly imprinted polymers"

Similar presentations


Ads by Google