Download presentation
Presentation is loading. Please wait.
1
Graphing Quadratics of ax2 +bx + c
Section 10 – 2 Day 2 Graphing Quadratics of ax2 +bx + c
2
Graphing Quadratics Step 1 – Determine whether parabola opens UP or DOWN: a > 0 = UP & a < 0 = DOWN Step 2: Find and plot vertex/axis of symmetry: Use for your x-value then substituting into the equation to find your y-value. Step 3: Make a TABLE and plot points – Good idea to pick 2 points GREATER than and 2 points LESS than x-coordinate of vertex. Plug into equation to find y-values 2
3
Graphing Quadratics cont.
REMEMBER – A parabola is SYMMETRIC!! Hint: if “a” term is a fraction. Choose points that are MULTIPLES of the DENOMINATOR! Step 4: Draw a PARABOLA connecting points. 3
4
Parabola: Vertex: a = 1 b = -4 c = 3 Example 1 Graph: y = x2 – 4x + 3
5
Table: Example 1 cont. x (domain) y (range) y = x2 – 4x + 3
y = (0)2 – 4(0) + 3 3 y = (1)2 – 4(1) + 3 1 y = (2)2 – 4(2) + 3 -1 Vertex-> 2 y = (3)2 – 4(3) + 3 3 y = (4)2 – 4(4) + 3 3 4 5
6
Parabola: Vertex: a = -2 b = -8 c = -3 Example 2
Graph: y = – 2x2 – 8x – 3 Parabola: Vertex: a = -2 b = -8 c = -3 6
7
Table: Example 2 cont. x (domain) y (range) y = -2x2 – 8x – 3 -4
-3 y = -2(-3)2 – 8(-3) – 3 3 -3 y = -2(-2)2 – 8(-2) – 3 5 Vertex-> -2 y = -2(-1)2 – 8(-1) – 3 3 -1 y = -2(-4)2 – 8(-4) – 3 -3 7
8
Example 3 Graph: Parabola: Vertex: a = 1/2 b = 0 c = 4 8
9
Table: Example 2 cont. x (domain) y (range) y = ½ x2 + 4 -4
12 y = ½ (-2)2 + 4 6 -2 y = ½ (0)2 + 4 4 Vertex-> y = ½ (2)2 + 4 6 2 y = ½ (4)2 + 4 12 4 9
10
Homework Section 10-2 Day 2 Worksheet
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.