Download presentation
1
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable
2
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “x” :
3
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “x” : No factoring needed so set denominator = 0 and solve.
4
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “x” : No factoring needed so set denominator = 0 and solve. Answer
5
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “m” :
6
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “m” : No factoring needed so set denominator = 0 and solve.
7
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “m” : No factoring needed so set denominator = 0 and solve. Answer
8
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “a” :
9
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “a” : No factoring needed so set denominator = 0 and solve. There is a short cut for denominators like The answer is
10
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “a” : In this case c = 2 and d = 9 There is a short cut for denominators like The answer is
11
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “a” : In this case c = 2 and d = 9 There is a short cut for denominators like The answer is Answer
12
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “x” :
13
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “x” : Factored denominator
14
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “x” : Set each expression = 0 and solve…
15
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “y” :
16
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “y” : Factored denominator
17
Rational Expressions – Restrictions
When working with rational expressions, we must remember that it is not possible to divide by zero. So we will identify / define values that are “NON-PERMISSIBLE “. Steps : Factor completely ( if needed ) 2. Set your denominator = 0 and solve for your variable Example : Find the non-permissible replacement for “y” :
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.