Presentation is loading. Please wait.

Presentation is loading. Please wait.

Carbon Monoxide “Insertion”

Similar presentations


Presentation on theme: "Carbon Monoxide “Insertion”"— Presentation transcript:

1 Carbon Monoxide “Insertion”
Siyu Ye

2 The term “insertion” is used to describe the process whereby an unsaturated moiety, which may or may not be coordinated to the metal initially, becomes bonded to the metal and to a saturated ligand (which was initially attached to the metal center). Anderson, G. K.; Cross, R. J. Acc. Chem. Res. 1984,17, 67. 2

3 Content Introduction Acid Induced Carbonylation
Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 3

4 Content Introduction Acid Induced Carbonylation
Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 4

5 The CO Molecule C+O-, electronegativity
Molecular Orbital of Carbon Monoxide C+O-, electronegativity C-O+, a low dipole moment of D LUMO HOMO Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 23. 5

6 Migratory Insertion Which is more appropriate?

7 alkyl migration CO migration
Calderazzo, F. Angew. Chem., Int. Ed. 1977, 16, 299. CO migration Brunner, H.; Vogt, H. Angew. Chem., Int. Ed. 1981, 20, 405. 7

8 Influence Factors cis-(CO/Me)
trans-(P/Me), ligand with a large trans influence θ, angle of L-M-X partial negative charge at alkyl group partial positive charge at CO Cavell, K. J. Coord. Chem. Rev. 1996, 155, 209. 8

9 Absence of Acyl-to-CO Migration
Ni-C (acetyl) bond (184 pm) < Ni-C σ bond (194 pm) Ti-C (acetyl) bond (207 pm) < Ti-C σ bond (214 pm) M-C (acetyl) bond, a partial double bond Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 79. 9

10 Content Introduction Acid Induced Carbonylation
Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 10

11 Acid Induced Carbonylation
Koch carbonylation Farcasiu, D.; Schlosberg, R. H. J. Org. Chem. 1982, 47, 151. 11

12 Content Introduction Acid Induced Carbonylation
Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 12

13 Li Induced Carbonylation
Seyferth, D.; Weinstein, R. M. J. Am. Chem. Soc. 1982, 104, 5534. Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am. Chem. Soc. 2001, 123, 13

14 Mg Induced Carbonylation
Sprangers, W. J. J. M.; Louw, R. J. Chem. Soc., Perkin Trans , 1895. 14

15 Al Induced Carbonylation
Mason, M. R.; Song, B.; Kirschbaum, K. J. Am. Chem. Soc. 2004, 126, 15

16 Content Introduction Acid Induced Carbonylation
Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 16

17 Transition Metal Induced Carbonylation
Chiusoli, G. P. Acc. Chem. Res. 1973, 6, 422. 17

18 Schoenberg, A. ; Bartoletti, I. ; Heck, R. F. J. Org. Chem
Heck, R. F. J. Am. Chem. Soc. 1963, 85, 2013. Reppe process 18

19 CO-to-C—X Insertion Heck, R. F. J. Am. Chem. Soc. 1963, 85, 1460.
Wang, M. D.; Alper, H. J. Am. Chem. Soc. 1992, 114, 7018. 19 19

20 Pauson-Khand Reaction
Paquette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912. Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, 1657. 20

21 Complicated Carbonylation
Negishi, E.-I.; Coperet, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. J. Am. Chem. Soc. 1996, 118, 5904. Aksin, O.; Dege, N.; Artok, L.; Turkmen, H.; Cetinkaya, B. Chem. Commun. 2006, 3187. 21

22 Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581.
Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581. 22

23 Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129, 8708.
Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129,  

24 Content Introduction Acid Induced Carbonylation
Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 24

25 Methanol Carbonylation
Monsanto process Forster, D. J. Am. Chem. Soc. 1976, 98, 846. 25

26 26 殷元骐 主编,《羰基合成化学》, p 167.

27 Hydroformylation typical condition: 110~180 ℃, 20~35 MPa
double bond isomerization, 110 ℃, p(CO) = 9.0 MPa, 1-pentene vs. 2-pentene, the same n/iso ratio 100 ℃, p(CO) from 0.25 MPa to 9.0 MPa, n/iso from 1.6 to 4.4 high p(CO), high p(H2) 殷元骐 主编,《羰基合成化学》, p 4. 27

28 Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, 3193.
Jackson, W. R.; Perlmutter, P.; Suh, G.-H. J. Chem. Soc., Chem. Commun. 1987, 40, 129. Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, 3193. TPPTS = P(m-C6H4SO3Na)3 Nair, V. S. et. al. Rec. Adv. Basic Appl. Aspects Industr. Catal. 1998, 113, 529. Smith, W. E. et. al. In Catalysis of Organic Reactions; Augustine, R. L., Ed.; Dekker: New York, 1985; p 151. 28

29 Kranemann, C. L.; Eilbracht, P. Synthesis 1998, 71.
Roggenbuck, R.; Eilbracht, P. Tetrahedron Lett. 1999, 40, 7455. 29

30 Asymmetric Hydroformylation
Difficulties : 1. High regioselectivity 2. High enantioselectivity 3. No racemization of aldehyde Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033. Breit, B. Acc. Chem. Res. 2003, 36, 264. 30

31 Diastereoselective Hydroformylation
Breit, B. Angew. Chem., Int. Ed. 1996, 35, 2835. Breit, B.; Zahn, S. K. Angew. Chem., Int. Ed. 1999, 38, 969. 31

32 Double Carbonylation (Rhone-Poulenc Company) 殷元骐 主编,《羰基合成化学》 32

33 Cassar, L. Ann. N. Y. Acad. Sci. 1980, 208, 333. Alper, H. Adv. Organomet. Chem. 1981, 19, 183.

34 Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1982, 233, C64.
Ozawa, F.; Soyma, H.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1982, 23, 3383. Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometallics 1984, 3, 683. 34

35 Francalanci, F. ; Bencini, E. ; Gardano, A. ; Vincenti, M. ; Foà, M. J
Francalanci, F. ; Bencini, E.; Gardano, A.; Vincenti, M.; Foà, M. J. Organomet. Chem. 1986, 301, C27.

36 Content Introduction Acid Induced Carbonylation
Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 36

37 Conclusion Atom economical
Variety, wide application in industry and lab synthesis Ni, Pd, Pt, Co, Rh catalysts, etc Various influencing factors: substrate, catalyst, solvent, pressure, temperature, additive, etc 37

38 Thanks for my group members.
Acknowledgment Thanks for Prof. Yu. Thanks for my group members. Thanks for all the teachers and the students. 38

39 Note 39

40 40

41 41

42 42


Download ppt "Carbon Monoxide “Insertion”"

Similar presentations


Ads by Google