Presentation is loading. Please wait.

Presentation is loading. Please wait.

1A + 2B  1C + 1D Calculate the equilibrium concentrations of each species when 150 mL 2.5 M A is mixed with 100.0 mL 2.5 M B. Kc = 2.0 x 10-10.

Similar presentations


Presentation on theme: "1A + 2B  1C + 1D Calculate the equilibrium concentrations of each species when 150 mL 2.5 M A is mixed with 100.0 mL 2.5 M B. Kc = 2.0 x 10-10."— Presentation transcript:

1 1A + 2B  1C + 1D Calculate the equilibrium concentrations of each species when 150 mL 2.5 M A is mixed with mL 2.5 M B. Kc = 2.0 x 10-10

2 Drill: 1A + 2B  1C + 1D Calculate the equilibrium concentrations of each species when a solution is made with 1.0 M A & 1.0 M B. Kc = 2.0 x 10-12

3 Exp # [A] [B] [C] Rate 1) 27 C 2) 27 C 3) 27 C 4) 27 C 5)127 C

4 ([A4]/[A1])a = rate4/rate1
Exp # [A] [B] [C] Rate 1) 27 C 2) 27 C 3) 27 C 4) 27 C 5)127 C ([A4]/[A1])a = rate4/rate1 3a = 9; thus, a = 2

5 ([B3]/[B2])b = rate3/rate2
Exp # [A] [B] [C] Rate 1) 27 C 2) 27 C 3) 27 C 4) 27 C 5)127 C ([B3]/[B2])b = rate3/rate2 2b = 8; thus b = 3

6 ([C2]/[C1])c = rate2/rate1
Exp # [A] [B] [C] Rate 1) 27 C 2) 27 C 3) 27 C 4) 27 C 5)127 C ([C2]/[C1])c = rate2/rate1 2c = 2; thus c = 1

7 Rate = k[A]2[B]3[C] k = Rate [A]2[B]3[C]

8 1 P2 + 2 SO2 + 1 O2  2 PO2 + 2 SO 2 PO2  1 P2O4 1 P2O SO  2 PO + 2 SO2 4 PO SO2  2 P2O5 + 3 S 3 P2O S  1 P6S6O15

9 1 P2 + 2 SO2 + 1 O2  2 PO2 + 2 SO 2 PO2  1 P2O4 1 P2O SO  2 PO + 2 SO2 4 PO SO2  2 P2O5 + 3 S 3 P2O S  1 P6S6O15

10 1 P2 + 2 SO2 + 1 O2  2 PO2 + 2 SO 2 PO2  1 P2O4 2 P2O SO  4 PO + 4 SO2 4 PO SO2  2 P2O5 + 3 S 3 P2O S  1 P6S6O15

11 1 P2 + 2 SO2 + 1 O2  2 PO2 + 2 SO 4 PO2  2 P2O4 2 P2O SO  4 PO + 4 SO2 4 PO SO2  2 P2O5 + 3 S 3 P2O S  1 P6S6O15

12 2 P2 + 4 SO2 + 2 O2  4 PO2 + 4 SO 4 PO2  2 P2O4 2 P2O SO  4 PO + 4 SO2 4 PO SO2  2 P2O5 + 3 S 3 P2O S  1 P6S6O15

13 2 P2 + 4 SO2 + 2 O2  4 PO2 + 4 SO 4 PO2  2 P2O4 2 P2O SO  4 PO + 4 SO2 4 PO SO2  2 P2O5 + 3 S 3 P2O S  1 P6S6O15

14 2 P2 + 4 SO2 + 2 O2  4 PO2 + 4 SO 4 PO2  2 P2O4 2 P2O SO  4 PO + 4 SO2 4 PO SO2  2 P2O5 + 3 S 2 P2 + 3 SO2 + 2 O2  2 P2O5 + 3 S

15 2 P2 + 3 SO2 + 2 O2  2 P2O5 + 3 S Rate = k[P2 ]2[SO2]3[O2]2

16 __N2 +__CO2 +__O2  __NO2 +__CO
__NO2  __N2O4 __N2O __CO  __NO +__CO2 __ NO __ CO2  __ N2O5 + __ C __N2O __C  __C2N2O5

17 __N2 +__CO2 +__O2  __NO2 +__CO
__NO2  __N2O4 __N2O __CO  __NO +__CO2 4 NO CO2  2 N2O5 + 3 C __N2O __C  __C2N2O5

18 __N2 +__CO2 +__O2  __NO2 +__CO
__NO2  __N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C __N2O __C  __C2N2O5

19 __N2 +__CO2 +__O2  __NO2 +__CO
__NO2  __N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C __N2O __C  __C2N2O5

20 __N2 +__CO2 +__O2  __NO2 +__CO
4 NO2  2 N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C __N2O __C  __C2N2O5

21 __N2 +__CO2 +__O2  __NO2 +__CO
4 NO2  2 N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C __N2O __C  __C2N2O5

22 2 N2 + 4 CO2 + 2 O2  4 NO2 + 4 CO 4 NO2  2 N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C __N2O __C  __C2N2O5

23 2 N2 + 4 CO2 + 2 O2  4 NO2 + 4 CO 4 NO2  2 N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C 2 N2 + 3 CO2 + 2 O2  2 N2O5 + 3 C __N2O __C  __C2N2O5

24 2 N2 + 4 CO2 + 2 O2  4 NO2 + 4 CO 4 NO2  2 N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C 2 N2 + 3 CO2 + 2 O2  2 N2O5 + 3 C 2 N2O C  2 C2N2O5

25 2 N2 + 4 CO2 + 2 O2  4 NO2 + 4 CO 4 NO2  2 N2O4 2 N2O CO  4 NO +4 CO2 4 NO CO2  2 N2O5 + 3 C 2 N2 + 3 CO2 + 2 O2  2 N2O5 + 3 C 2 N2O C  2 C2N2O5

26

27 Acid/Base

28 Properties of Acids Sour taste, Change color of dyes, Conduct electricity in solution, React with many metals, React with bases to form salts

29 Properties of Bases Bitter taste, Feel slippery, Change color of dyes, Conduct electricity in solution, React with acids to form salts

30 Arrhenius Acids: release H+ or H3O+ in solution
Bases: release OH- in solution

31 Arrhenius Acid: HA --> H+ + A- HCl --> H+ + Cl-
Base: MOH --> M+ + OH- NaOH -->Na+ + OH-

32 Bronsted-Lowry Acid: Proton donor Base: Proton Acceptor

33 Bronsted-Lowry HA + H2O --> H3O+ + A- HI + H2O --> H3O+ + I-
Acid Base CA CB NH3 + H2O --> NH4+ + OH- Base Acid CA CB

34 Lewis Acid/Base Acid: Electron Acceptor Base: Electron Donor

35 Lewis Acid/Base H3N: + BF3 --> H3N-BF3 Base Acid Neutral

36 Common Names H+ Hydrogen ion H3O+ Hydronium ion H- Hydride ion
OH- Hydroxide ion NH3 Ammonia NH4+ Ammonium ion

37 Amphiprotism Can act like an acid or a base
Can donate or accept protons

38 Naming Acids All acids are H-anion If the anion is:
-ides  hydro___ic acids -ates  ___ic acids -ites  ___ous acids

39 Naming Bases Almost all bases are metal hydroxides
Name by normal method Ammonia (NH3) as well as many amines are bases

40 Strong Acids or Bases Strong acids or bases ionize 100 % in solution
Weak acids or bases ionize <100 % in solution

41 Drill: Name each of the following: KOH HBr Al(OH)3 H2CO3 HClO4 NH3

42 Review Drill & Check HW

43 CHM II HW Review PP-21 Complete the attached assignment & turn it in tomorrow.

44 Strong Acids or Bases Strong acids or bases ionize 100 % in solution
Weak acids or bases ionize <100 % in solution

45 Strong Acids HClO4 Perchloric acid H2SO4 Sulfuric acid
HNO3 Nitric acid HCl Hydrochloric acid HBr Hydrobromic acid HI Hydroiodic acid

46 Strong Bases All column I hydroxides Ca(OH)2 Calcium hydroxide
Sr(OH)2 Strontium hydroxide Ba(OH)2 Barium hydroxide

47 Strong Acid/Base Ionizes 100 % (1 M) HA H+ + A- 1 M – all

48 Binary Acids Acids containing only 2 elements HCl Hydrochloric acid
H2S Hydrosulfuric acid

49 Ternary Acids H2SO4 Sulfuric acid HNO3 Nitric acid
Acids containing 3 elements H2SO4 Sulfuric acid HNO3 Nitric acid

50 Monoprotic Acids Acids containing only one ionizable hydrogen
HBr Hydrobromic acid HC2H3O2 Acetic acid

51 Diprotic Acids Acids containing 2 ionizable hydrogens
H2SO4 Sulfuric acid H2CO3 Carbonic acid

52 Triprotic Acids Acids containing 3 ionizable hydrogens
H3PO4 Phosphoric acid H3AsO4 Arsenic acid

53 Polyprotic Acids H4SiO4 Silicic acid H2CO2 Carbonous acid
Acids containing more than one ionizable hydrogens H4SiO4 Silicic acid H2CO2 Carbonous acid

54 Monohydroxic Base A base containing only one ionizable hydroxide
NaOH Sodium hydroxide LiOH Lithium hydroxide

55 Neutralization Rxn HA(aq) + MOH(aq)  MA(aq) + H2O(l)
A reaction between an acid & a base making salt & H2O HA(aq) + MOH(aq)  MA(aq) + H2O(l)

56 Neutralization Rxn HCl(aq) + NaOH(aq) NaCl(aq) + H2O(l)

57 pH The negative log of the hydrogen or hydronium ion concentration
pH = -log[H+] pOH = -log[OH-]

58 Calculate the pH of each of the following: 1) [H+] = 0
Calculate the pH of each of the following: 1) [H+] = M 2) [HCl] = M 3) [HBr] = M

59 Calculate the pOH of each of the following:
1) [OH-] = M 2) [KOH] = M 3) [NaOH] = 4.0 x 10-7 M

60 A solution with known concentration
Standard Solution A solution with known concentration

61 Drill: Identify: acid, base, CA, & CB
HCO3- + H2O H2CO3 + OH-

62 Review Drill & Check HW

63 CHM II HW Review PP-21 Complete the attached assignment & turn it in tomorrow.

64 Titration A method of determining the concentration of one solution by reacting it with a standard solution

65 Titration Formula for monoprotic solutions
MAVA = MBVB

66 Equivalence Point The point where the concentrations of the two solutions in the titration are equal

67 Titration Fact When titrating acids against bases, the end
point of the titration is at the equivalence point

68 Acid/Base Equivalence Point
The point where the H+ concentration is equal to the OH- concentration

69 Titration Fact No changes will be observed when titrating acids against bases; thus, one must use an indicator to see changes

70 Indicator An organic dye that changes color when the pH changes

71 Drill: Calculate the molarity of 25.0 mL HCl when it’s titrated to its equivalence point with 50.0 mL M NaOH

72 Titration Formula for monoprotic solutions
MAVA = MBVB

73 Dilution Formula M1V1 = M2V2

74 Calculate the mL of 16.0 M HNO3 it takes to make 4.0 L of 0.100 M HNO3

75 Calculate the mL of 12.5 M HCl required to make 2.5 L of 0.200 M HCl
Make Calculations Calculate the mL of 12.5 M HCl required to make 2.5 L of M HCl

76 Moles of solute per liter of solution (M)
Molarity Moles of solute per liter of solution (M)

77 Normality Number of moles of hydrogen or hydroxide ions per liter of solution (N)

78 Titration Formula for Acid/Base
NAVA = NBVB Elliott’s Rule: #HMAVA = #OHMBVB

79 Make Calculations Calculate the molarity of 30.0 mL H2CO3 when it’s titrated to its equivalence point with 75.0 mL M NaOH

80 Make Calculations Calculate the molarity of 40.0 mL H3PO4 when it’s titrated to its equivalence point with 30.0 mL 0.20 M Ba(OH)2

81 Calculate the volume of 0. 250 M HCl needed to titrate 50. 00 mL 0
Calculate the volume of M HCl needed to titrate mL M NaOH to its equivalence point

82 Calculate the molarity 25. 0 mL H3PO4 that neutralizes 50. 00 mL 0
Calculate the molarity 25.0 mL H3PO4 that neutralizes mL M Ca(OH)2 to its equivalence point

83 Titration Curve: Strong acid vs strong base

84

85 Titration Curve: Strong acid vs strong base; then weak acid vs strong base

86

87

88 Titration Curve: Strong base vs strong acid; then weak base vs strong acid

89

90 3.2 g HI is dissolved in a 1250 mL aqueous solution. Calculate its pH.

91 Calculate the volume of 0. 10 M H3PO4 that neutralizes 50. 00 mL 0
Calculate the volume of 0.10 M H3PO4 that neutralizes mL M Ca(OH)2 to its equivalence point

92 AP CHM HW Read: Chapter 13 Problems: 7 & 9 Page: 395

93 CHM II HW Read: Chapter 18 Problems: 27 Page: 787

94 Drill: Calculate the molarity of 25
Drill: Calculate the molarity of mL of H3PO4 that was titrated to its equivalence point with mL of M Ba(OH)2.


Download ppt "1A + 2B  1C + 1D Calculate the equilibrium concentrations of each species when 150 mL 2.5 M A is mixed with 100.0 mL 2.5 M B. Kc = 2.0 x 10-10."

Similar presentations


Ads by Google