Download presentation
Presentation is loading. Please wait.
Published byZita Ida Soósné Modified over 5 years ago
1
Genome of the week Bacillus subtilis Gram-positive soil bacterium
Genetically tractable, well-studied Developmental pathways (sporulation, genetic competence) Industrial and agricultural importance 4.2 Mb genome (sequence completed 1997) Close relative of Bacillus anthracis (Anthrax)
2
B. subtilis genome features
4,106 protein coding genes 10 rRNA operons Nearly 50% of the genome consists of paralogous genes. 77 ABC transporter binding proteins 10 phage like regions - horizontal transfer. Low GC regions in the genome. 18 sigma factors - initiate transcription. 34 two-component regulatory systems.
3
Annotating genes How to assign preliminary functions to genes.
Automated programs. Similarity searches BLAST and PSI-BLAST COGs, Pfam, CDD, other databases Only 50-75% of genes will have a predicted function. Some have no known homologs in any other genome. Functional characterization (individual genes) Gene knockouts Overexpression
4
In many cases computer annotation will only be able to predict function - NOT assign function!
The biological function of many genes have not been determined, even in model systems. As genomic characterization of gene function continues - more and more computer generated annotations will be correct.
5
Molecular function - activity of a protein at the molecular level.
Examples would be ATPase, metal binding, converting glucose-6-phosphate to fructose-6-phosphate. Biological function - cellular role of the protein. Examples would be translation initiation, DNA replication, glycolysis.
6
Homologs, orthologs, and paralogs.
Homologous genes are genes that share a common evolutionary ancestor. Orthologs are genes found in different organisms that arose from a common ancestor Paralogs are genes found in the same organism that arose from a common ancestor. Duplication could have occurred in the species or earlier.
7
Using BLAST to predict gene function.
BLAST predicted protein sequence against the non-redundant database. Determine best hits Automated annotation programs will often assign the best hit function to the gene being searched. Must manually confirm automated annotations. (Final project).
8
Basic Local Alignment Search Tool
Calculates similarity for biological sequences Finds best local alignments Heuristic approach based on Smith-Waterman algorithm Searches for matching “words” rather than individual residues Uses statistical theory to determine if a match might have occurred by chance NCBI Field Guide
9
Nucleotide Words GTACTGGACATGGACCCTACAGGAA GTACTGGACAT TACTGGACATG
Query: Word Size = 11 GTACTGGACAT TACTGGACATG ACTGGACATGG CTGGACATGGA TGGACATGGAC GGACATGGACC GACATGGACCC ACATGGACCCT Minimum word size = 7 blastn default = 11 megablast default = 28 Make a lookup table of words NCBI Field Guide
10
Word Size can be 2 or 3 (default = 3)
Protein Words GTQITVEDLFYNIATRRKALKN Query: Word Size = 3 GTQ TQI QIT ITV TVE VED EDL DLF ... Word Size can be 2 or 3 (default = 3) Make a lookup table of words Neighborhood Words LTV, MTV, ISV, LSV, etc. NCBI Field Guide
11
Minimum Requirements for a Hit
ATCGCCATGCTTAATTGGGCTT CATGCTTAATT exact word match one match Nucleotide BLAST requires one exact match Protein BLAST requires two neighboring matches within 40 aa GTQITVEDLFYNI SEI YYN neighborhood words two matches NCBI Field Guide
12
Scoring Systems - Nucleotides
Identity matrix A G C T A +1 –3 –3 -3 G –3 +1 –3 -3 C –3 – T –3 –3 –3 +1 CAGGTAGCAAGCTTGCATGTCA || |||||||||||| ||||| raw score = 19-9 = 10 CACGTAGCAAGCTTG-GTGTCA NCBI Field Guide
13
Scoring Systems - Proteins
Position Independent Matrices PAM Matrices (Percent Accepted Mutation) Derived from observation; small dataset of alignments Implicit model of evolution All calculated from PAM1 PAM250 widely used BLOSUM Matrices (BLOck SUbstitution Matrices) Derived from observation; large dataset of highly conserved blocks Each matrix derived separately from blocks with a defined percent identity cutoff BLOSUM62 - default matrix for BLAST Position Specific Score Matrices (PSSMs) PSI- and RPS-BLAST NCBI Field Guide
14
BLOSUM62 NCBI Field Guide Common amino acids have low weights
R -1 5 N D C Q E G H I L K M F P S T W Y V X A R N D C Q E G H I L K M F P S T W Y V X Common amino acids have low weights Rare amino acids have high weights Negative for less likely substitutions Positive for more likely substitutions
15
Scores V D S – C Y V E T L C F BLOSUM62 +4 +2 +1 -12 +9 +3 7
Simply add the scores for each pair of aligned residues V D S – C Y V E T L C F BLOSUM PAM Different matrices produce different scores! NCBI Field Guide
16
Local Alignment Statistics
High scores of local alignments between two random sequences follow the Extreme Value Distribution Expect Value E = number of database hits you expect to find by chance size of database your score At low E values E approximates a P value Alignments expected number of random hits Score NCBI Field Guide
17
BLAST Databases for Proteins
nr (non-redundant protein sequences) GenBank CDS translations NP_ RefSeqs PIR, Swiss-Prot, PRF PDB (sequences from structures) swissprot pat - patents pdb – sequences with 3D structures month – sequences updated within 30 days NCBI Field Guide
18
Assessment of BLAST output
What is the level of identity and similarity of the best hits? More identity - more likely the proteins may have similar functions. Does the area of similarity occur over the entire protein? Or just part of the protein? (fig. 2.19) Often you will find hits to only part of your protein. A GTP-binding domain for example. Have any of the best hits been characterized experimentally? With so many microbial genomes sequenced chances are you will have to search extensively to find a hit that has been characterized experimentally. NCBI Field Guide
19
BLAST Formatting Page NCBI Field Guide
20
BLAST Output: Graphic Overview
PX SH3 NCBI Field Guide
21
BLAST Output: Descriptions
4 X 10-68 links to entrez default e value cutoff = 10
22
TaxBLAST: Taxonomy Reports
23
BLAST Output: Alignments
>gi| |sp|Q9Y5X1|SNX9_HUMAN Sorting nexin 9 (SH3 and PX domain- containing protein 1) (SDP1 protein) Length = 595 Score = 255 bits (652), Expect = 4e-68 Identities = 140/322 (43%), Positives = 185/322 (56%), Gaps = 7/322 (2%) Query: 221 SSATVSRNLNRFSTFVKSGGEAFVLGEASGFVKDGDKLCVVLGPYGPEWQENPYPFQCTI 280 Sbjct: 197 SSSSMKIPLNKFPGFAKPGTEQYLL--AKQLAKPKEKIPIIVGDYGPMWVYPTSTFDCVV 254 Query: 281 DDPTKQTKFKGMKSYISYKLVPTHTQVPVHRRYKHFDWLYARLAEKF-PVISVPHLPEKQ 339 DP K +K G+KSYI Y+L PT+T V+ RYKHFDWLY RL KF I +P LP+KQ Sbjct: 255 ADPRKGSKMYGLKSYIEYQLTPTNTNRSVNHRYKHFDWLYERLLVKFGSAIPIPSLPDKQ 314 Query: 340 ATGRFEEDFISKRRKGLIWWMNHMASHPVLAQCDVFQHFLTCPSSTDEKAWKQGKRKAEK 399 TGRFEE+FI R + L WM M HPV+++ +VFQ FL + DEK WK GKRKAE+ Sbjct: 315 VTGRFEEEFIKMRMERLQAWMTRMCRHPVISESEVFQQFL---NFRDEKEWKTGKRKAER 371 SS+++ LN+F F K G E ++L A K +K+ +++G YGP W F C + NCBI Field Guide
24
Blink – Protein BLAST Alignments
Lists only 200 hits List is nonredundant NCBI Field Guide
25
Nucleotide vs. Protein BLAST
Comparing ADSS from H. sapiens and A. thaliana aaccgggtgacggtggtgctcggtgcgcagtggggcgacgaaggc Human: N R V T V V L G A Q W G D E G + + V V L G Q W G D E G A.th.: S Q V S G V L G C Q W G D E G agtcaagtatctggtgtactcggttgccaatggggagatgaaggt BLASTp finds three matching words BLASTn finds no match, because there are no 7 bp words Protein searches are generally more sensitive than nucleotide searches. NCBI Field Guide
26
N P Translated BLAST P N P P P N P P N N ucleotide rotein
Particularly useful for nucleotide sequences without protein annotations, such as ESTs or genomic DNA Program Query Database P N P blastx P P N tblastn P P N N tblastx
27
Linking Protein Sequence, Structure, and Function
CDD: Conserved functional domains in proteins represented by a PSSM Domains PSI-BLAST, RPS-BLAST, CDART 3D Domains NCBI Field Guide
28
Position Specific Substitution Rates
Weakly conserved serine Active site serine
29
Position Specific Score Matrix (PSSM)
A R N D C Q E G H I L K M F P S T W Y V 206 D 207 G 208 V 209 I 210 S 211 S 212 C 213 N 214 G 215 D 216 S 217 G 218 G 219 P 220 L 221 N 222 C 223 Q 224 A Serine is scored differently in these two positions Active site nucleophile
30
PSI-BLAST NCBI Field Guide Create your own PSSM:
Confirming relationships of purine nucleotide metabolism proteins PSSM BLOSUM62 query Alignment Alignment
31
PSI BLAST NCBI Field Guide e value cutoff for PSSM
>gi|113340|sp|P03958|ADA_MOUSE ADENOSINE DEAMINASE (ADENOSINE AMINOH MAQTPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLAKFDYY VIAGCREAIKRIAYEFVEMKAKEGVVYVEVRYSPHLLANSKVDPMPWNQTEGDVTPDDVVDLVNQGLQ EQAFGIKVRSILCCMRHQPSWSLEVLELCKKYNQKTVVAMDLAGDETIEGSSLFPGHVEAYEGAVKNG RTVHAGEVGSPEVVREAVDILKTERVGHGYHTIEDEALYNRLLKENMHFEVCPWSSYLTGAWDPKTTH VRFKNDKANYSLNTDDPLIFKSTLDTDYQMTKKDMGFTEEEFKRLNINAAKSSFLPEEEKKELLERLY e value cutoff for PSSM NCBI Field Guide
32
PSI Results: Initial BLAST Run
NCBI Field Guide
33
First PSSM Search NCBI Field Guide
Other purine nucleotide metabolizing enzymes not found by ordinary BLAST NCBI Field Guide
34
Third PSSM Search: Convergence
Just below threshold, another nucleotide metabolism enzyme NCBI Field Guide
35
Entrez Domains (CDD) A Database of Position Specific Score Matrices
16,482 records Domains A Database of Position Specific Score Matrices CDD 2% NCBI Curated Alignments SMART 4% LOAD 0.3% EMBL HMM based models originally concentrating on eukaryotic signaling domains, now expanding NCBI Library of Ancient Domains Pfam 35% KOG 29% Sanger Center Pfam-A seeds: HMM based models representing a wide variety of functional domains derived from SWISS-PROT NCBI Eukaryotic COGs COG 30% NCBI BLAST based alignments derived from complete proteomes of unicelluar organisms NCBI Field Guide
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.