Download presentation
Presentation is loading. Please wait.
Published byAubrie Hunter Modified over 5 years ago
1
Find the area of the surface obtained by rotating the curve about the x-axis. {image}
1. 2. 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2
Find the area of the surface obtained by rotating the curve about the x-axis. {image}
1. 2. 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
3
If the infinite curve {image} , is rotated about the x-axis , find the area of the resulting surface. {image} 1. 2. 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
4
The ellipse {image} is rotated about the x-axis to form a surface called an ellipsoid. Find the surface area of this ellipsoid. 1. {image} 2. 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
5
Let L be the length of the curve {image} where f is positive and has a continuous derivative. Let Sf be the surface area generated by rotating the curve about the x-axis. If c is a positive constant, define g ( x ) = f ( x ) + c and let Sg be the corresponding surface area generated by the curve {image} . Express Sg in terms of Sf and L. {image} 1. 2. 3. 4. 5. 6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.