Download presentation
Presentation is loading. Please wait.
Published byCarina Holte Modified over 5 years ago
1
Cost-aware Pre-training for Multiclass Cost-sensitive Deep Learning
Source : Computer Science, 2015. Authors : Yuan C, Lin H T, Yang S W Speaker : Jiefan Tan Date : 2017/5/25 國立台灣大學資訊工程學系
2
Outline Introduction Pre-training with AutoEncoder
Cost Matrix, Cost-sensitive methods Pre-training with AutoEncoder Cost-sensitive AutoEncoder Experimental results Conclusion
3
Cost Matrix For each sample(x, y, C) C(y, k) k∈[1, K] Donate
Predict Actual Donate Not to donate (Mailing ) Get donation(-6+x) -6 (No mailing ) -x+6 For each sample(x, y, C) C(y, k) k∈[1, K]
4
Cost-Sensitive Methods
Bayes-optimal decision(BOD) Trains a classifier that outputs class-wise probability Predicts with 𝑦 = argmin 1≤𝑗≤𝐾 𝑘=1 𝐾 𝑝 𝑦=𝑘 𝑥 𝐶(𝑘,𝑗) Regression-based: Train a set of regressors rk , where k∈{1,2,…K} such that rk(x) ≈ C(y, k) Predicts with 𝑦 = argmin 1≤𝑗≤𝐾 𝑟𝑘(𝑥)
5
AutoEncoder layer-wise pre-training
To make the network parameters start from a good initial point
6
AutoEncoder y = S(Wx + b) x’ = S(WTy + b’)
均方误差 交叉熵 AE reconstructs the original input x Goal of AE:
7
Cost-sensitive AutoEncoder
y = S(Wx + b) x’ = S(WTy + b’) x’’ = W’y+b’’ Goal of CSAE: 1. Reconstruct the original input x ; 2. Digest the cost information by reconstructing the cost vector C.
8
AutoEncoder Fine-tuning
9
Experiment & Results Dataset: MNIST bg-img-rot SVHN CIFAR-10
10
Cost Setting Cost matrix K*K C(y,y) = 0 C(k,y)
eg: class A = 10 ; class B = 50 C(A:B) = 10*(60:10)/(60:50) = 50 C(B:A) = 10*(60:50)/(60:10) =2 将数据集的类分布加入代价定义,少数类的误分代价将更高
11
Experiment & Results Performance with β
12
Experiment & Results
13
Conclusion Leaning a method to define cost C
For CNN, may replace softmax layer with cost- ware loss layer
14
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.