Presentation is loading. Please wait.

Presentation is loading. Please wait.

宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班 2015.12.7.

Similar presentations


Presentation on theme: "宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班 2015.12.7."— Presentation transcript:

1 宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班

2 内容提纲 §宇宙磁场的探测 §大尺度磁场的观测限制 §天体物理过程对大尺度磁场的放大 §原初磁场的产生机制

3 § Large-scale magnetic fields
Evidences: Magnetic fields are ubiquitous in our Universe. They are detected in astronomical structures of different sizes, from stars up to galaxies, galaxy clusters and voids. Methods: Faraday rotation measurements, synchrotron radio emission, the Zeeman splitting of radio spectral lines, … 𝐵 𝑔𝑎𝑙𝑎𝑥𝑦 ~ 𝐵 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ~ 10 −6 Gauss 𝐵 𝑣𝑜𝑖𝑑 ≥ 10 −16 Gauss

4

5 § Observational constraints
CMB (Planck Collaboration, arXiv: ) the energy momentum tensor Faraday rotation magnetically-induced bispectra the breaking of statistical isotropy BBN (B. Cheng et al, arXiv:astro-ph/ ) increasing the weak reaction rates increasing the electron density increasing the expansion rate of the universe 𝐵 1𝑀𝑝𝑐 <4.4× 10 −9 Gauss 𝐵 𝐵𝐵𝑁 < 10 −6 Gauss

6 Intergalactic (voids) magnetic fields
𝐵≥ 10 −16 Gauss EW phase transition QCD phase transition Recombination epoch Inflationary magnetogenesis

7 § Astrophysical processes
dynamo mechanism (Y.B. Zeldovich et al, 1980) compression mechanism tiny seed magnetic fields ≳ 10 −13 G galactic dynamo galactic magnetic fields ~1𝜇 G

8 § Cosmological phase transitions
EW phase transition [C.J. Hogan, Phys. Rev. Lett. 51 (1983) 1488] QCD phase transition [J.M. Quashnock et al, ApJ 344 (1989) L49] (1) strength of magnetic fields, 𝐵 (2) correlation length, 𝜆 𝐵 ~ 𝐻 −1

9 § Inflationary magnetogenesis
Models problems (1) strong coupling problem (2) back reaction problem (3) curvature perturbation problem breaking of conformal invariance amplified fluctuations

10 ℒ 𝐸𝑀 =− 1 4 𝐹 𝜇𝜈 𝐹 𝜇𝜈 −𝑏𝑅 𝐴 𝜇 𝐴 𝜇 −𝑐 𝑅 𝜇𝜈 𝐴 𝜇 𝐴 𝜈
𝑈(1) ℒ 𝐸𝑀 =− 1 4 𝐹 𝜇𝜈 𝐹 𝜇𝜈 −𝑏𝑅 𝐹 𝜇𝜈 𝐹 𝜇𝜈 −𝑐 𝑅 𝜇𝜈 𝐹 𝜇𝜅 𝐹 𝜅 𝜈 −𝑑 𝑅 𝜇𝜈𝜆𝜅 𝐹 𝜇𝜈 𝐹 𝜆𝜅 ~ 10 −40 G ℒ 𝐸𝑀 =− 1 4 𝐹 𝜇𝜈 𝐹 𝜇𝜈 − 𝐷 𝜇 𝜙 ( 𝐷 𝜇 𝜙) ∗ ℒ 𝐸𝑀 =− 1 4 𝐹 𝜇𝜈 𝐹 𝜇𝜈 − 1 2 𝜕 𝜇 𝜃 𝜕 𝜇 𝜃+ 𝑔 𝑎 𝜃 𝐹 𝜇𝜈 𝐹 𝜇𝜈 Non-Gaussianity

11 ℒ 𝐸𝑀 =− 1 4 𝑒 𝛼𝜙 𝐹 𝜇𝜈 𝐹 𝜇𝜈

12 ℒ 𝐸𝑀 =− 1 4 𝐼 2 (𝜙) 𝐹 𝜇𝜈 𝐹 𝜇𝜈 ❶ strong coupling problem, ❷ back reaction problem, ❸ curvature perturbation problem. 𝐴 𝜇 → 𝑔𝐴 𝜇 ℒ=− 1 4 𝐹 𝜇𝜈 𝐹 𝜇𝜈 +𝑖 𝜓 𝛾 𝜇 ( 𝜕 𝜇 +𝑖𝑔 𝐴 𝜇 )𝜓 ℒ=− 1 4 𝑔 2 𝐹 𝜇𝜈 𝐹 𝜇𝜈 +𝑖 𝜓 𝛾 𝜇 ( 𝜕 𝜇 +𝑖 𝐴 𝜇 )𝜓 (1) 𝐼>1 during inflation, 𝐼~1 at the end of inflation (2) 𝜌 𝐸𝑀 < 𝐻 𝐼 2 during inflation (3) 𝜁 𝐸𝑀 < 𝐴 𝑠

13 § A model of inflationary magnetogenesis
our action the equation of motion a spatially-flat FRW metric 𝑑 𝑠 2 = 𝑎 2 (𝜂)(−𝑑 𝜂 2 +𝑑 𝑥 2 ) Coulomb gauge: 𝐴 0 =0 and 𝜕 𝑖 𝐴 𝑖 =0 Fourier expansion

14 normalization condition
assuming normalization condition where 𝜒 2 = 𝑐 1 −4 12 𝑐 2 +3 𝑐 3 +2 𝑐 4 𝐻 𝐼 2 defining a new variable 𝑣 𝑘 =𝜒𝑓 𝐴 𝑘 𝜒 𝑣 𝑘 ′′ + 𝑘 2 − 𝑓′′ 𝑓 𝑣 𝑘 =0 assuming 𝑓 𝜂 = 𝑓 𝑒 𝑎 𝑎 𝑒 𝑛 ❶ solution to the strong coupling problem, requiring 𝑓 𝑒 ~1 and 𝑛<0

15 for short waves for long waves If −1/2<𝑛<0, the first term dominates. a strong blue spectrum If 𝑛<−1/2, the second term dominates. The power spectrum is a scale invariant spectrum for 𝑛=−3 the entropy conservation, for 𝐻 𝐼 ~ 10 −6 , 𝑎 0 / 𝑎 𝑒 ~ , 𝐵 𝜆 ~ 10 −6 𝐻 𝐼 ~ 10 −12 Gauss

16 The energy-momentum tensor is
The energy density is where The trace of i-j components is where

17 The main contribution to the energy density and pressure comes from the power spectrum of the electric fields. ❷ solution to the back reaction problem, requiring 𝑄 1 = 𝑄 3 =0 the evolution of the curvature perturbation on super-Hubble scales ❸ The curvature perturbation problem is avoided if 𝑄 1 = 𝑄 3 =0.

18 谢谢!


Download ppt "宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班 2015.12.7."

Similar presentations


Ads by Google