Download presentation
Presentation is loading. Please wait.
Published bySoner Volkan Modified over 5 years ago
1
Exercise Use long division to find the quotient. 180 ÷ 15
2
Exercise Use long division to find the quotient. 3 ÷ 5
3
Exercise Use long division to find the quotient. 3 ÷ 12
4
Exercise Use long division to find the quotient. 1 ÷ 3
5
Exercise Use long division to find the quotient. 7 ÷ 11
6
, ( ) Rational Numbers can be expressed as a ratio: 3 4 2 1 2
, ( ) 3 4 2 1 2 can be expressed as a decimal: , 2
7
When a rational number is expressed as a decimal, the digits either terminate or repeat.
8
1 3 2 5
9
Example 1 3 4 Convert to a decimal. 0.75 2 8 20 3 4 = 0.75
10
Example 2 5 12 Convert to a decimal. 5 12 = 0.416666… = 0.416 0.416
5 12 Convert to a decimal. 0.416 4 8 20 12 80 72 8 5 12 = … = 0.416
11
Example 3 2 11 Convert to a decimal. 11 2.00 0.18 1 1 90 88 2 2 11
2 11 Convert to a decimal. 0.18 1 1 90 88 2 2 11 = … = 0.18
12
Example Convert the fraction to a decimal. 7 20 = 0.35
13
Example Convert the fraction to a decimal. 7 3 = 2.3
14
Example Convert the fraction to a decimal. 4 33 = 0.12
15
Example Convert the fraction to a decimal. = 0.4583
16
Example Convert the fraction to a decimal. 5 7 =
17
To convert terminating decimals to fractions: place the digit(s) that follow(s) the decimal point over the place value of the last digit and reduce to lowest terms.
18
Example 4 Convert 0.175 to its reduced rational form using the GCF.
175 1,000 = 7 x x 25 7 40 =
19
Example Convert 0.12 to a fraction in lowest terms. 12 100 3 25 =
20
Example Convert 3.25 to a fraction in lowest terms. 13 4 =
21
To convert repeating decimals to fractions:
Set the decimal equal to x. Multiply the equation by 10n, where n = the number of repeating digits. Subtract 1. from 2. Reduce.
22
Example 5 0.45
23
Example 6 0.136
24
0.3
25
0.7
26
0.342
27
0.571, 0.579, 0.57, 0.6, , , 0.59
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.