Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multivariable Linear Systems

Similar presentations


Presentation on theme: "Multivariable Linear Systems"โ€” Presentation transcript:

1 Multivariable Linear Systems
Skill 21

2 Objectives Use Back-Substitution to solve systems in Row-Echelon Form
Use Gaussian Elimination to solve systems of linear equations Solve non-square systems of linear equations Find partial fraction decomposition

3 Row-Echelon A form to put systems in so you can quickly use substitution to solve. Modify the system until the first equation has three terms. Modify the system until the second equation has two terms. Modify the system until the third equation has one term. Substitute backwards one at a time.

4 Example; Solve Row-Echelon Form
2๐‘ฅโˆ’๐‘ฆ+3๐‘ง=17 โˆ’7๐‘ฆโˆ’4๐‘ง=โˆ’9 ๐‘ง=4 โˆ’7๐‘ฆโˆ’4 ๐‘ง =โˆ’9 2๐‘ฅโˆ’๐‘ฆ+3๐‘ง=17 โˆ’7๐‘ฆโˆ’4 4 =โˆ’9 2๐‘ฅโˆ’ โˆ’ =17 โˆ’7๐‘ฆ=7 2๐‘ฅ=4 ๐’š=โˆ’๐Ÿ ๐’™=๐Ÿ ๐Ÿ,โˆ’๐Ÿ,๐Ÿ’

5 Example; Solve Row-Echelon Form
โˆ’3๐‘ฅ+2๐‘ฆโˆ’4๐‘ง=15 5๐‘ฆโˆ’2๐‘ง=27 ๐‘ง=โˆ’6 5๐‘ฆโˆ’2 ๐‘ง =27 โˆ’3๐‘ฅ+2๐‘ฆโˆ’4๐‘ง=15 5๐‘ฆโˆ’2 โˆ’6 =27 โˆ’3๐‘ฅโˆ’ 3 +3 โˆ’6 =15 5๐‘ฆ=15 โˆ’3๐‘ฅ=โˆ’15 ๐’š=๐Ÿ‘ ๐’™=๐Ÿ“ ๐Ÿ“,๐Ÿ‘,โˆ’๐Ÿ”

6 Gaussian Elimination Elementary Row Operations for Systems of Equations 1) Interchange two equations. 2) Multiply one equation by a non-zero constant. 3) Add a multiple of one equation to another equation.

7 Example; Using Gaussian Elimination
๐‘ฅโˆ’2๐‘ฆ+3๐‘ง=9 ๐‘ฆ+4๐‘ง=7 2๐‘ฅโˆ’5๐‘ฆ+5๐‘ง=17 ๐‘น ๐Ÿ + ๐‘น ๐Ÿ ๐‘ฅโˆ’2๐‘ฆ+3๐‘ง=9 ๐‘ฆ+4๐‘ง=7 โˆ’๐‘ฆโˆ’๐‘ง=โˆ’1 ๐’™โˆ’๐Ÿ๐’š+๐Ÿ‘๐’›=๐Ÿ— โˆ’๐’™+๐Ÿ‘๐’š+๐’›=โˆ’๐Ÿ ๐Ÿ๐’™โˆ’๐Ÿ“๐’š+๐Ÿ“๐’›=๐Ÿ๐Ÿ• ๐Ÿ ๐‘น ๐Ÿ + ๐‘น ๐Ÿ‘ ๐‘ฅโˆ’2๐‘ฆ+3๐‘ง=9 ๐‘ฆ+4๐‘ง=7 3๐‘ง=6 ๐‘น ๐Ÿ + ๐‘น ๐Ÿ‘ ๐’™โˆ’๐Ÿ๐’š+๐Ÿ‘๐’›=๐Ÿ— ๐’š+๐Ÿ’๐’›=๐Ÿ• ๐’›=๐Ÿ ๐Ÿ ๐Ÿ‘ ๐‘น ๐Ÿ‘

8 Example; Using Gaussian Elimination, Continued
๐‘ฅโˆ’2๐‘ฆ+3๐‘ง=9 ๐‘ฆ+4๐‘ง=7 ๐‘ง=2 ๐‘ฆ+4 ๐‘ง =7 ๐‘ฅโˆ’2๐‘ฆ+3๐‘ง=9 ๐‘ฆ+4 2 =7 ๐‘ฅโˆ’2 โˆ’ =9 ๐‘ฆ+8=7 ๐‘ฅ+2+6=9 ๐’™=๐Ÿ ๐’š=โˆ’๐Ÿ ๐Ÿ,โˆ’๐Ÿ,๐Ÿ

9 Example; Using Gaussian Elimination
๐‘ฅ+๐‘ฆ+๐‘ง=6 โˆ’3๐‘ฆโˆ’๐‘ง=โˆ’9 โˆ’2๐‘ฆโˆ’4๐‘ง=โˆ’16 โˆ’๐Ÿ ๐‘น ๐Ÿ + ๐‘น ๐Ÿ โˆ’๐Ÿ‘ ๐‘น ๐Ÿ + ๐‘น ๐Ÿ‘ ๐‘ฅ+๐‘ฆ+๐‘ง=6 ๐‘ฆ+2๐‘ง=8 โˆ’3๐‘ฆโˆ’๐‘ง=โˆ’9 โˆ’ ๐Ÿ ๐Ÿ ๐‘น ๐Ÿ‘ โ†” ๐‘น ๐Ÿ ๐’™+๐’š+๐’›=๐Ÿ” ๐Ÿ๐’™โˆ’๐’š+๐’›=๐Ÿ‘ ๐Ÿ‘๐’™+๐’šโˆ’๐’›=๐Ÿ ๐‘ฅ+๐‘ฆ+๐‘ง=6 ๐‘ฆ+2๐‘ง=8 5๐‘ง=15 ๐Ÿ‘ ๐‘น ๐Ÿ + ๐‘น ๐Ÿ‘ ๐’™+๐’š+๐’›=๐Ÿ” ๐’š+๐Ÿ๐’›=๐Ÿ– ๐’›=๐Ÿ‘ ๐Ÿ ๐Ÿ“ ๐‘น ๐Ÿ‘

10 Example; Using Gaussian Elimination, Continued
๐‘ฅ+๐‘ฆ+๐‘ง=6 ๐‘ฆ+2๐‘ง=8 ๐‘ง=3 ๐‘ฆ+2 ๐‘ง =8 ๐‘ฅ+๐‘ฆ+๐‘ง=6 ๐‘ฆ+2 3 =8 ๐‘ฅ =6 ๐‘ฆ+6=8 ๐‘ฅ+5=6 ๐’™=๐Ÿ ๐’š=๐Ÿ ๐Ÿ,๐Ÿ,๐Ÿ‘

11 Example; Systems with fewer equations than variables
๐‘ฅโˆ’2๐‘ฆ+๐‘ง=2 3๐‘ฆโˆ’3๐‘ง=โˆ’3 โˆ’๐Ÿ ๐‘น ๐Ÿ + ๐‘น ๐Ÿ ๐’™โˆ’๐Ÿ๐’š+๐’›=๐Ÿ ๐Ÿ๐’™โˆ’๐’šโˆ’๐’›=๐Ÿ ๐‘ฅโˆ’2๐‘ฆ+๐‘ง=2 ๐‘ฆโˆ’๐‘ง=โˆ’1 ๐Ÿ ๐Ÿ‘ ๐‘น ๐Ÿ ๐‘ฅโˆ’2๐‘ฆ+๐‘ง=2 ๐‘ฆ=๐‘งโˆ’1 ๐‘ฅโˆ’2๐‘ฆ+๐‘ง=2 ๐‘ฅโˆ’2 ๐‘งโˆ’1 +๐‘ง=2 Let ๐’›=๐’‚ ๐‘ฅโˆ’2๐‘ง+2+๐‘ง=2 So, ๐’™=๐’‚ ๐’™=๐’› and, ๐’š=๐’‚โˆ’๐Ÿ ๐’‚,๐’‚โˆ’๐Ÿ,๐’‚

12 Example; Systems with fewer equations than variables
๐’™โˆ’๐’š+๐Ÿ’๐’›=๐Ÿ‘ ๐Ÿ’๐’™โˆ’๐’›=๐ŸŽ Let ๐’™=๐’‚ ๐‘ฅโˆ’๐‘ฆ+4๐‘ง=2 ๐‘ง=4๐‘ฅ So, ๐’›=๐Ÿ’๐’‚ and, ๐’š=๐Ÿ“๐’‚โˆ’๐Ÿ‘ ๐‘ฅโˆ’๐‘ฆ+4๐‘ง=3 ๐‘ฅโˆ’๐‘ฆ+4๐‘ฅ=3 5๐‘ฅโˆ’๐‘ฆ=3 ๐’‚,๐Ÿ“๐’‚โˆ’๐Ÿ‘,๐Ÿ’๐’‚ ๐’š=๐Ÿ“๐’™โˆ’๐Ÿ‘

13 Partial Fraction Decomposition
1) Divide if improper 2) Factor Denominator 3) Linear Factors 4) Quadratic Factors

14 Example; Partial Fraction Decomposition
๐‘ฅ+7 ๐‘ฅ 2 โˆ’๐‘ฅโˆ’6 = ๐ด ๐‘ฅโˆ’3 + ๐ต ๐‘ฅ+2 ๐‘ฅ+7=๐ด ๐‘ฅ+2 +๐ต ๐‘ฅโˆ’3 ๐‘ฅ+7=๐ด๐‘ฅ+2๐ด+๐ต๐‘ฅโˆ’3๐ต 1=๐ด+๐ต 7=2๐ดโˆ’3๐ต โˆ’๐Ÿ 1=๐ด+๐ต โˆ’2=โˆ’2๐ดโˆ’2๐ต 7=2๐ดโˆ’3๐ต 1=๐ดโˆ’1 + ๐‘จ=๐Ÿ ๐Ÿ ๐’™โˆ’๐Ÿ‘ โˆ’ ๐Ÿ ๐’™+๐Ÿ 5=โˆ’5๐ต ๐‘ฉ=โˆ’๐Ÿ

15 Example; Partial Fraction Decomposition
๐‘ฅ+8 ๐‘ฅ 2 +6๐‘ฅ+8 = ๐ด ๐‘ฅ+4 + ๐ต ๐‘ฅ+2 ๐‘ฅ+8=๐ด ๐‘ฅ+2 +๐ต ๐‘ฅ+4 ๐‘ฅ+8=๐ด๐‘ฅ+2๐ด+๐ต๐‘ฅ+4๐ต 1=๐ด+๐ต 8=2๐ด+4๐ต โˆ’๐Ÿ 1=๐ด+๐ต โˆ’2=โˆ’2๐ดโˆ’2๐ต 8=2๐ด+4๐ต 1=๐ด+3 + ๐‘จ=โˆ’๐Ÿ 6=2๐ต โˆ’๐Ÿ ๐’™+๐Ÿ’ + ๐Ÿ‘ ๐’™+๐Ÿ ๐‘ฉ=๐Ÿ‘

16 21: Multivariable Linear Systems
Summarize your notes Questions? Homework Worksheet Quiz


Download ppt "Multivariable Linear Systems"

Similar presentations


Ads by Google