Download presentation
Presentation is loading. Please wait.
1
STERILE NEUTRINOS and WARM DARK MATTER
2
The nMSM model T. Asaka and M. Shaposhnikov Phys.Lett.B620(2005)17 M.Shaposhnokov Nucl.Phys.B763(2007)49 Minimum extension of the SM to accomodate massive neutrinos See-saw formula for active neutrinos mn=-MD(1/MI)(MD)T Majorana mass MI Dirac mass MD=fv v=174 GeV vac exp val of Higgs field Usual choice: f as in quark sector, M = GeV Alternative choice: small f Ne, Nm, Nt
3
A simple calculation In the Universe at large: Dark matter 25%
Ordinary matter(nucleons) 5% Nucleon/photon = 400 g/cm3, 100 ne/ cm3 Putting all the numbers together In the Universe at large N/g = /m (m in MeV) Thus : N/ne = /m UNe2 > /m
4
Testing the anomalies Reactor and rad source anomaly 1.2 10-5/m = 7%
m = 180 eV !! LSND anomaly /m = 1% m = 1.2 keV
5
N as Dark Matter Candidate
Suppose that DM is made of heavy neutrinos of mass m MeV Density of DM MeV/cm3 Number density of N 300/m /cm3 Relative velocity km/s Flux /m /cm2/s But the earth moves at 30 km/s Yearly modulation In December 5,1 109/m /cm2/s In June ,9 109/m /cm2/s Possible experiments?
6
Decay of sterile neutrinos
If mass < 1 MeV W Radiative decay: GIM suppressed t = (1/m(MeV)5)(1/U2)(s) N n e g If mass > 1 MeV Purely weak decay: Lifetime for e+e-n t = (1/m(MeV)5)(1/U2)(s) + phase-space Weak/radiative ~ 1010
7
Heavy neutrinos at accelerators
Mixed with active neutrinos In all weak processes they appear at the level U2Nl Their mass is limited by kinematics p e N m(N) < 130 MeV p m N m(N) < 20 MeV K e N m(N) < 450 MeV K m N m(N) < 350 MeV … W e N m(N) < 80 GeV
8
PRESENT LIMITS
9
Consistancy problem UNe2 > 1.2 10-5/m ??
Livetime must be greater than the age of the Universe For N → n e+ e- t = (1/m(MeV)5)(1/U2) → m<10keV ! For N → n g = (1/m(MeV)5)(1/U2) →m<1.5 MeV
10
Astrophysics searches
A.Boyarsky, D.Malyshev, A.Neronov, O.Ruchaysky arXiv: H.J.de Vega, N.G.Sanchez Mon.Not.R.Astron.Soc.(2010) From SPI (Integral) and XMM-Newton
11
Laboratory search? Flux 61012/m(keV) /cm2/s
Probability of decay is l/(bgct) b = 0,7 10-3, g = 1 Radiative decay t = (1/m(keV)5)(1/U2)(s) N g But matter enhancement e W e n t0/tm ~ (Ne/1024)2 (m/E) (keV/m)4 tm ~ (keV/m)(1/U2) In 1 m3 detector N = 1.3 U2 events/day Interactions of keV sterile neutrinos: S.Ando, A.Kusenko arXiv:
12
Conclusion Heavy neutrinos probably exist
Potentially predicting Warm Dark Matter (… but problematic consistancy) Experimentally extremelly challenging
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.