Download presentation
Presentation is loading. Please wait.
1
COMPASS plans to measure GPDs
Jean-Marc Le Goff DAPNIA/CEA-Saclay 24 Feb 2006, Albuquerque workshop on Orbital Angular Momentum The COMPASS experiment GPDs at COMPASS now: deep r production ≥2010: DVCS and HEMP
2
The COMPASS experiment
3
The COMPASS Collaboration (230 Physicists from 12 Countries)
Bielefeld, Bochum, Bonn (ISKP & PI), Erlangen, Freiburg, Heidelberg, Mainz, München (LMU & TU) Dubna (LPP and LNP), Moscow (INR, LPI, State University), Protvino CERN Warsaw (SINS), Warsaw (TU) Helsinki Prag Nagoya CEA-Saclay 30% der Mitglieder = deutsch Lisboa Torino(University,INFN), Trieste(University,INFN) Burdwan, Calcutta Tel Aviv
4
COMPASS COmmon Muon and Proton Apparatus
COMPASS fixed target experiment at CERN muons hadrons π/K, p Beam: µ+/ spill (4.8s / 16.2s) h/spill Beam polarisation: 80% Beam momentum: GeV/c GeV/c COMPASS SPS LHC COMPASS COmmon Muon and Proton Apparatus for Structure and Spectroscopy
5
Physics goals muon beam hadron beams nucleon spin structure
Quark and Gluon Polarization in (longitudinally) polarized nucleons transverse spin distribution function Tq(x) Flavor dependent polarized quark helicity densities q(x) Lambda polarisation Diffractive vector-meson production hadron beams nucleon spectroscopy Primakoff-Reactions polarizability of and K Exotics : glueballs and hybrids charmed mesons and baryons semi-leptonic decays double-charmed baryons Large detector: 40 x 6 x 4 m3 Data taking starts 2001 5-10 years physics program Cycle: 16.8 s 800 Gbyte/shift
6
Spectrometer 2002 2004 trigger-hodoscopes SM2 dipole SM1 dipole DW45
straws SM2 dipole Muon-filter2,MW2 RICH_1 HCAL1 Gem_11 SM1 dipole ECAL2,HCAL2 Polarised Target MWPC Gems Scifi Muon-filter1,MW1 Veto straws,MWPC,Gems,SciFi Gems,SciFi,DCs,straws Silicon SciFi Micromegas,DC,SciFi BMS
7
COMPASS and GPDs
8
measurement of GPDs γ γ* γ* γ γ* Collins et al.
Deeply Virtual Compton Scattering (DVCS): γ γ* Q2 p p’ GPDs x + ξ x - ξ t =Δ2 meson Gluon contribution L γ* Q2 γ hard x + ξ x - ξ soft GPDs Q2 large t << Q2 + γ* p p’ t =Δ2 Hard Exclusive Meson Production (HEMP): meson p p’ GPDs γ* x + ξ x - ξ hard soft L Q2 L t =Δ2 Quark contribution
9
Complementarity of experiments
100GeV At fixed xBj, study in Q2 Valence and sea quarks and Gluons 0.0001< xBj < 0.01 Gluons Valence quarks Hermes PRL87(2001) COMPASS plans JLab PRL87(2001) H1 and ZEUS PLB517(2001) PLB573(2003)
10
if Nμ 5 Q2 < 17 GeV2 if Nμ 2 Q2 < 11 GeV2
Benefit of a higher muon intensity for GPDs study if Nμ 5 Q2 < 17 GeV2 if Nμ 2 Q2 < 11 GeV2 E=190, 100GeV DVCS limited by luminosity now Nμ= 2.108μ /SPS spill Q2 < 7.5 GeV2 At fixed xBj, study in Q2
11
m flux at COMPASS in 2010 ? sharing CNGS/FT new Linac 4
up to 10 times more p +improve m line COMPASS >>LINAC4 From Lau Gatignon
12
What can we measure now ?
13
DVCS, HEMP ? sDVCS small, bckg Vanderhagen et al.:
HEMP factorization: gL vector meson decay R=sT/sL ρ0 largest s ρ0 π+ π- , charged particules Vanderhagen et al.: 1/Q4 1/Q6 vector mesons pseudo-scalar
14
Diffractive r0 production
W t Q 2 * N N’ μN μ’N’ρ π+π- Exp (NMC, E665, Zeus, H1, Hermes): lr ≈ lg S-channel helicity conservation SCHC exchanged object has natural parity : P=(-1)J NPE
15
Spin properties of amplitudes
angular dist. of ρ π+π- : spin density matrix elt they are bilinear combinations of helicity amplitudes : λγ= 1, λρ= 1, 9 amplitudes if NPE 5 amplitudes T00, T11 >> T01, T >> T-11 SCHC helicity flip flips
16
r spin density matrix elt
04 00 0.01 < Q² < 0.05 < Q² < 0.3 < Q² < 0.6 < Q² < 2.0 < Q² < 10 GeV2 Distribution : in terms of amplitudes:
17
Determination of R=sL/sT
2002 If SCHC holds : sL is dominant at Q2>2 2002: high stat in large Q2 range 2003 and 2004 data : - much more stat - better high Q2 coverage
18
Conclusions on rho SCHC → R stot + R → sL
when Q2 > 2 → R > 1 : accurate sL we have transv. target spin asym → E/H important for Ji sum rule (∫E+H) exploratory measurement (no exclusivity, nuclear target)
19
Towards a dedicated experiment for DVCS and HEMP
20
Additions to COMPASS setup
μ’ p’ μ 2.5m liquid H2 target to be designed and built L = cm-2 s-1 ECal 1 or 2 12° Exclusivity: at high energy dDM2 = d[(mp+mπ)2-mp2] > 1 GeV2 need 0.25 GeV2 for DM cut hermetic detector Recoil detector to insure exclusivity to be designed and built + additional calorimeter at larger angle
21
A possible solution 30° ECAL0 12° 4m : Funding by European Union (Bonn-Mainz-Warsaw-Saclay) 45° sector recoil detector - scintillating material studies (200ps ToF Resolution over 4m) - fast triggering and multi-hit ADC/TDC system
22
DVCS background not included: Beam halo with hadronic contamination
Beam pile-up Secondary interactions External Bremsstrahlung DVCS: μp μp with PYTHIA 6.1 simulate: HEπ°P: μp μpπ° Dissociation of the proton: μp μN*π° Nπ DIS: μp μpX with 1, 1π°, 2π°,η… Acceptance cuts: qgmax= 30° Egmin= 50 MeV qchargedmax= 30°
23
GPD measurement xxB/(2-xB) g* γ TDVCS: and t are fixed loop over x
GPDs x + ξ x - ξ t =Δ2 g* TDVCS: xxB/(2-xB) and t are fixed loop over x
24
DVCS + Bethe-heitler φ θ μ’ μ * p BH calculable μ μ p p
Higher energy: DVCS>>BH DVCS Cross section Smaller energy: DVCS~BH Interference term will provide the DVCS amplitude
25
DVCS + BH with and . dσ(μpμp) = dσBH + dσDVCSunpol + Pμ dσDVCSpol
t, ξ~xBj/2 fixed dσ(μpμp) = dσBH + dσDVCSunpol + Pμ dσDVCSpol + eμ aBH Re ADVCS eμ Pμ aBH Im ADVCS cos nφ sin nφ φ θ μ’ μ * p
26
at 100 GeV assuming: L = 1.3 1032 cm-2 s-1 φ φ φ
BCA Q2=40.5 GeV2 x = 0.05 ± 0.02 Model 1: H(x,0,t) ~ q(x) F(t) Model 2: H(x,0,t) = q(x) e t <b2> = q(x) / xα’t assuming: L = cm-2 s-1 150 days efficiency=25% 2 bins shown out of 18: 3 bins in xBj= 0.05, 0.1, 0.2 6 bins in Q2 from 2 to 7 GeV2 φ φ BCA x = 0.10 ± 0.03 φ
27
advantage of COMPASS kinematics
model 1 COMPASS model 2 Model 1: H(x,0,t) ~ q(x) F(t) Model 2: H(x,0,t) = q(x) e t <b2> = q(x) / xα’t sensitive to different spatial distributions at different x
28
HEMP: filter of GPDs ~ ~ Cross section:
Vector meson production (ρ,ω,…) H & E Pseudo-scalar production (π,η… ) H & E ~ ~ Hρ0 = 1/2 (2/3 Hu + 1/3 Hd + 3/8 Hg) Hω = 1/2 (2/3 Hu – 1/3 Hd + 1/8 Hg) H = /3 Hs - 1/8 Hg Transverse single spin asymmetry : ~ E/H
29
HEMP in 2010 HEMP requires higher Q2 than DVCS
with liq H target and same m flux as now: r Q2= 20 GeV2 w, p, h, f Q2= 7 GeV2 if more m higher Q2
30
Roadmap for DVCS at COMPASS
: r production: sL and transverse spin asym 2005 : "Expression of Interest": SPSC-E0I-005 : recoil detector prototype 2008 ? : proposal : construction of the recoil detector cryogenic target, ECal0 2010: dedicated GPD measurement
31
Measure OAM ? Ji sum rule relates total quark spin to GPDs H and E :
similar sum rule for gluons To do : Measure H and E Perform flavor decomposition Extrapolate to t=0 Integrate over x at fixed x Sivers asymmetries are also measured at COMPASS
32
SPARE
33
Key role of calorimetry
ECAL2 from 0.4 to 2°: mainly lead glass GAMS ECAL1 from 2 to 12° : good energy and position resolution for 2-g separation in a high rate environment ECAL0 from 12 to 30°: to be designed for background rejection Careful study of g and π0 production COMPASS program with hadron beam
34
ρ° angular distributions W(cosθ, φ, Φ)
depends on the Spin density matrix elements 23 (15) observables with polarized (unpolarized) beam φ This analysis: only one-dimensional angular distribution We will use also: ψ= φ - Φ
35
Angular distributions
0.01 < Q² < 0.05 < Q² < 0.3 < Q² < 0.6 < Q² < 2.0 < Q² 0.01 < Q² < 0.05 < Q² < 0.3 < Q² < 0.6 < Q² < 2.0 < Q² < 10 GeV2 φ Preliminary : - Corrected for Acceptance, smearing and efficiency (MC:DIPSI gen) - Background not subtracted Statistical error only, limited by MC
36
Measurement of r and Im r
04 1-1 3 1-1 φ Distribution : beam polarisation weak violation Spin density matrices: If SCHC holds
37
<x>=0.11 <Q2>=2.6
COMPASS 6 angular distributions among 18: 3 bins in xBj=0.05, 0.1, 0.2 6 bins in Q2 from 2 to 7 GeV2 BCA in DVCS projections for 1 year HERMES one single bin <x>=0.11 <Q2>=2.6
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.