Presentation is loading. Please wait.

Presentation is loading. Please wait.

COMPASS plans to measure GPDs

Similar presentations


Presentation on theme: "COMPASS plans to measure GPDs"— Presentation transcript:

1 COMPASS plans to measure GPDs
Jean-Marc Le Goff DAPNIA/CEA-Saclay 24 Feb 2006, Albuquerque workshop on Orbital Angular Momentum The COMPASS experiment GPDs at COMPASS now: deep r production ≥2010: DVCS and HEMP

2 The COMPASS experiment

3 The COMPASS Collaboration (230 Physicists from 12 Countries)
Bielefeld, Bochum, Bonn (ISKP & PI), Erlangen, Freiburg, Heidelberg, Mainz, München (LMU & TU) Dubna (LPP and LNP), Moscow (INR, LPI, State University), Protvino CERN Warsaw (SINS), Warsaw (TU) Helsinki Prag Nagoya CEA-Saclay 30% der Mitglieder = deutsch Lisboa Torino(University,INFN), Trieste(University,INFN) Burdwan, Calcutta Tel Aviv

4 COMPASS  COmmon Muon and Proton Apparatus
COMPASS fixed target experiment at CERN muons hadrons π/K, p Beam: µ+/ spill (4.8s / 16.2s) h/spill Beam polarisation: 80% Beam momentum: GeV/c GeV/c COMPASS SPS LHC COMPASS  COmmon Muon and Proton Apparatus for Structure and Spectroscopy

5 Physics goals muon beam hadron beams nucleon spin structure
Quark and Gluon Polarization in (longitudinally) polarized nucleons transverse spin distribution function Tq(x) Flavor dependent polarized quark helicity densities q(x) Lambda polarisation Diffractive vector-meson production hadron beams nucleon spectroscopy Primakoff-Reactions polarizability of  and K Exotics : glueballs and hybrids charmed mesons and baryons semi-leptonic decays double-charmed baryons Large detector: 40 x 6 x 4 m3 Data taking starts 2001 5-10 years physics program Cycle: 16.8 s 800 Gbyte/shift

6 Spectrometer 2002  2004 trigger-hodoscopes SM2 dipole SM1 dipole DW45
straws SM2 dipole Muon-filter2,MW2 RICH_1 HCAL1 Gem_11 SM1 dipole ECAL2,HCAL2 Polarised Target MWPC Gems Scifi Muon-filter1,MW1 Veto straws,MWPC,Gems,SciFi Gems,SciFi,DCs,straws Silicon SciFi Micromegas,DC,SciFi BMS

7 COMPASS and GPDs

8 measurement of GPDs γ γ* γ* γ γ* Collins et al.
Deeply Virtual Compton Scattering (DVCS): γ γ* Q2 p p’ GPDs x + ξ x - ξ t =Δ2 meson Gluon contribution L γ* Q2 γ hard x + ξ x - ξ soft GPDs Q2 large t << Q2 + γ* p p’ t =Δ2 Hard Exclusive Meson Production (HEMP): meson p p’ GPDs γ* x + ξ x - ξ hard soft L Q2 L t =Δ2 Quark contribution

9 Complementarity of experiments
100GeV At fixed xBj, study in Q2 Valence and sea quarks and Gluons 0.0001< xBj < 0.01 Gluons Valence quarks Hermes PRL87(2001) COMPASS plans JLab PRL87(2001) H1 and ZEUS PLB517(2001) PLB573(2003)

10  if Nμ  5  Q2 < 17 GeV2 if Nμ  2  Q2 < 11 GeV2
Benefit of a higher muon intensity for GPDs study if Nμ  5  Q2 < 17 GeV2 if Nμ  2  Q2 < 11 GeV2 E=190, 100GeV DVCS limited by luminosity now Nμ= 2.108μ /SPS spill Q2 < 7.5 GeV2 At fixed xBj, study in Q2

11 m flux at COMPASS in 2010 ?  sharing CNGS/FT  new Linac 4 
up to 10 times more p +improve m line COMPASS >>LINAC4 From Lau Gatignon

12 What can we measure now ?

13 DVCS, HEMP ? sDVCS small, bckg Vanderhagen et al.:
HEMP factorization: gL vector meson decay  R=sT/sL ρ0 largest s ρ0  π+ π- , charged particules Vanderhagen et al.: 1/Q4 1/Q6 vector mesons pseudo-scalar

14 Diffractive r0 production
W t Q 2 * N N’ μN μ’N’ρ π+π- Exp (NMC, E665, Zeus, H1, Hermes): lr ≈ lg S-channel helicity conservation SCHC exchanged object has natural parity : P=(-1)J NPE

15 Spin properties of amplitudes
angular dist. of ρ  π+π- : spin density matrix elt they are bilinear combinations of helicity amplitudes : λγ=  1, λρ=  1,  9 amplitudes if NPE  5 amplitudes T00, T11 >> T01, T >> T-11 SCHC helicity flip flips

16 r spin density matrix elt
04 00 0.01 < Q² < 0.05 < Q² < 0.3 < Q² < 0.6 < Q² < 2.0 < Q² < 10 GeV2 Distribution : in terms of amplitudes:

17 Determination of R=sL/sT
2002 If SCHC holds : sL is dominant at Q2>2 2002: high stat in large Q2 range 2003 and 2004 data : - much more stat - better high Q2 coverage

18 Conclusions on rho SCHC → R stot + R → sL
when Q2 > 2 → R > 1 : accurate sL we have transv. target spin asym → E/H important for Ji sum rule (∫E+H) exploratory measurement (no exclusivity, nuclear target)

19 Towards a dedicated experiment for DVCS and HEMP

20 Additions to COMPASS setup
μ’ p’ μ 2.5m liquid H2 target to be designed and built L = cm-2 s-1  ECal 1 or 2   12° Exclusivity: at high energy dDM2 = d[(mp+mπ)2-mp2] > 1 GeV2 need 0.25 GeV2 for DM cut  hermetic detector Recoil detector to insure exclusivity to be designed and built + additional calorimeter at larger angle

21 A possible solution 30° ECAL0 12° 4m : Funding by European Union (Bonn-Mainz-Warsaw-Saclay) 45° sector recoil detector - scintillating material studies (200ps ToF Resolution over 4m) - fast triggering and multi-hit ADC/TDC system

22 DVCS background not included: Beam halo with hadronic contamination
Beam pile-up Secondary interactions External Bremsstrahlung DVCS: μp  μp with PYTHIA 6.1 simulate: HEπ°P: μp  μpπ°   Dissociation of the proton: μp  μN*π°  Nπ DIS: μp μpX with 1, 1π°, 2π°,η… Acceptance cuts: qgmax= 30° Egmin= 50 MeV qchargedmax= 30°

23 GPD measurement xxB/(2-xB) g* γ TDVCS: and t are fixed loop over x
GPDs x + ξ x - ξ t =Δ2 g* TDVCS: xxB/(2-xB) and t are fixed loop over x

24 DVCS + Bethe-heitler φ θ μ’ μ *  p BH calculable μ μ p p
Higher energy: DVCS>>BH  DVCS Cross section Smaller energy: DVCS~BH Interference term will provide the DVCS amplitude

25 DVCS + BH with and . dσ(μpμp) = dσBH + dσDVCSunpol + Pμ dσDVCSpol
t, ξ~xBj/2 fixed dσ(μpμp) = dσBH + dσDVCSunpol + Pμ dσDVCSpol + eμ aBH Re ADVCS eμ Pμ aBH Im ADVCS  cos nφ  sin nφ φ θ μ’ μ * p

26 at 100 GeV assuming: L = 1.3 1032 cm-2 s-1 φ φ φ
BCA Q2=40.5 GeV2 x = 0.05 ± 0.02 Model 1: H(x,0,t) ~ q(x) F(t) Model 2: H(x,0,t) = q(x) e t <b2> = q(x) / xα’t assuming: L = cm-2 s-1 150 days efficiency=25% 2 bins shown out of 18: 3 bins in xBj= 0.05, 0.1, 0.2 6 bins in Q2 from 2 to 7 GeV2 φ φ BCA x = 0.10 ± 0.03 φ

27 advantage of COMPASS kinematics
model 1 COMPASS model 2 Model 1: H(x,0,t) ~ q(x) F(t) Model 2: H(x,0,t) = q(x) e t <b2> = q(x) / xα’t sensitive to different spatial distributions at different x

28 HEMP: filter of GPDs ~ ~ Cross section:
Vector meson production (ρ,ω,…)  H & E Pseudo-scalar production (π,η… )  H & E ~ ~ Hρ0 = 1/2 (2/3 Hu + 1/3 Hd + 3/8 Hg) Hω = 1/2 (2/3 Hu – 1/3 Hd + 1/8 Hg) H = /3 Hs - 1/8 Hg Transverse single spin asymmetry : ~ E/H

29 HEMP in 2010 HEMP requires higher Q2 than DVCS
with liq H target and same m flux as now: r  Q2= 20 GeV2 w, p, h, f  Q2= 7 GeV2 if more m  higher Q2

30 Roadmap for DVCS at COMPASS
: r production: sL and transverse spin asym 2005 : "Expression of Interest": SPSC-E0I-005 : recoil detector prototype 2008 ? : proposal : construction of the recoil detector cryogenic target, ECal0 2010: dedicated GPD measurement

31 Measure OAM ? Ji sum rule relates total quark spin to GPDs H and E :
similar sum rule for gluons To do : Measure H and E Perform flavor decomposition Extrapolate to t=0 Integrate over x at fixed x Sivers asymmetries are also measured at COMPASS

32 SPARE

33 Key role of calorimetry
ECAL2 from 0.4 to 2°: mainly lead glass GAMS ECAL1 from 2 to 12° : good energy and position resolution for 2-g separation in a high rate environment ECAL0 from 12 to 30°: to be designed for background rejection Careful study of g and π0 production  COMPASS program with hadron beam

34 ρ° angular distributions W(cosθ, φ, Φ)
depends on the Spin density matrix elements  23 (15) observables with polarized (unpolarized) beam φ This analysis: only one-dimensional angular distribution We will use also: ψ= φ - Φ

35 Angular distributions
0.01 < Q² < 0.05 < Q² < 0.3 < Q² < 0.6 < Q² < 2.0 < Q² 0.01 < Q² < 0.05 < Q² < 0.3 < Q² < 0.6 < Q² < 2.0 < Q² < 10 GeV2 φ Preliminary : - Corrected for Acceptance, smearing and efficiency (MC:DIPSI gen) - Background not subtracted Statistical error only, limited by MC

36 Measurement of r and Im r
04 1-1 3 1-1 φ Distribution : beam polarisation weak violation Spin density matrices: If SCHC holds

37 <x>=0.11 <Q2>=2.6
COMPASS 6 angular distributions among 18: 3 bins in xBj=0.05, 0.1, 0.2 6 bins in Q2 from 2 to 7 GeV2 BCA in DVCS projections for 1 year HERMES one single bin <x>=0.11 <Q2>=2.6


Download ppt "COMPASS plans to measure GPDs"

Similar presentations


Ads by Google