Download presentation
Presentation is loading. Please wait.
Published byΞαλλίΟΟΞ· ΞΞ¬ΟΞΏΟ Modified over 5 years ago
1
09/05/2019 P-REACT Video Analytics
2
09/05/2019 Video Analytics Analytics using and RGB/IR sensor and an odroid-XU3 system. Extract salient regions using: Frame differencing π· π =| πΌ π β πΌ πβπ | Morphological filtering (erosion) π· π = π· π βπ» Contour extraction Accurately detect motion (also tested with IR and depth data)
3
Detect anomalous activity (running, fighting, bag snatching)
09/05/2019 Video Analytics Quantize each contour with a grid Form mid-term point trajectories using optical flow ππΌ ππ₯ ππ₯ ππ‘ + ππΌ ππ¦ ππ¦ ππ‘ + ππΌ ππ‘ =0 Extract motion histogram per cell Use SVM or RT for classification Aggregate overall cell Apply temporal smoothing Detect anomalous activity (running, fighting, bag snatching)
4
Multiple humans tracking and identification
09/05/2019 Video Analytics Dynamically update background Divide frame in a grid Compute foreground change rate per cell π= π π β© π πβ1 π π βͺ π πβ1 Detect static changes in the background (applied to graffiti detection) Use pedestrian detection algorithm Point trajectories connect temporally distant detections Remove false positives πππππππ§π π₯ π π΄π₯+ π π π π₯ Use gait descriptors for identification Multiple humans tracking and identification
5
Video Analytics Detection of events
09/05/2019 Video Analytics Detection and tracking of individuals Close, mid and far-distance views Different profiles Track joiner for enhanced reliability Detection of events βMotionβ, βRunningβ, βChasingβ, βFightingβ, βGroupβ
6
Depth Analytics Analytics using a depth sensor and a NUC system
09/05/2019 Depth Analytics Analytics using a depth sensor and a NUC system Extract foreground using depth data Compute 4D normal vectors π π₯,π¦,π§,π‘ =π π₯,π¦,π‘ βπ§=0 π=π»π=( ππ ππ₯ , ππ ππ¦ , ππ ππ‘ ,β1)
7
Accurately detect motion and abnormal incidents (e.g. fighting)
09/05/2019 Depth Analytics Divide the depth stream in spatio-temporal cells Project normal vectors on each cell π π π π π , π π =max(0, π π π π π ) Extract HON4D descriptor Pr π π π = πβπ π π π , π π π π£ βπ πβπ π π π , π π£ Use Random Trees for classification Accurately detect motion and abnormal incidents (e.g. fighting)
8
09/05/2019 Contact Points CERTH: Dr. Dimitrios Tzovaras, Mr. Georgios Stavropoulos, Dr. Nikolaos Dimitriou, VICOMTECH: Mr. Juan Arraiza Irujo, Dr. Marcos Nieto,
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.