Download presentation
Presentation is loading. Please wait.
1
Super-virtual Refraction Interferometry: Theory
Pawan Bharadwaj, Gerard Schuster, Ian Mallinson KAUST Standard OBS Receiver Gather Super-virtual OBS Receiver Gather 110 km 110 km
2
Motivation Problem: Short Streamer=Missing Low-Wavenumber Components
Solution: Streamer+OBS+Refraction Interferometry+Tomography? Key Idea: Stack Refractions to get SNR= N for Wide-Offset Refractions source
3
Outline Supervirtual Refraction Theory Synthetic OBS Results
Taiwan OBS Results Summary
4
Outline Supervirtual Refraction Theory Synthetic OBS Results
Taiwan OBS Results Summary
5
Refl., Refrac., Inteferometry Background
Reflection Stacking: Harry Mayne (1950’s-60’s) Refraction Conv. & Correl: Palmer (1980’s) Daylight Imaging: Claerbout/Rickett (1990s) Virtual Sources: Calvert & Bakulin (2004) Recip. Eqn. Correlation: Wapenaar (2004) Stationary Phase & Src Points: Snieder (2004) Refraction Interferometry: Dong et al. (2006) Applications Refraction Interferometry: BSU (2008- current) Super-virtual Refraction Interferometry: KAUST (2010- ) datum dedatum
6
Stacked Reflections: NMO + Stacking
Benefit: SNR = N Liability: Horizontal Reflectors
7
1.Stacked Refractions: + Stacking
t - t = t - t A B’C A B’B B’C B’B 1.Stacked Refractions: Stacking d d AB AC ~ d BC A d d dt B C e dt A1 B C
8
{ e e e wt wt w(t t ) = What does mean? i -i i - d d ~ d B C A1 B C
Interpretation: Virtual source at B’ excited at advanced time -tB’B Time it takes to go A->C A B’C e i wt A B’B e -i wt Time it takes to go A->B d d AB AC ~ d BC A = e B’C i w(t - t B’B ) dt { e A1 B C Dashed arrow=neg. time Solid arrow=pos. time B’
9
1.Stacked Refractions: + Stacking
d d AB AC ~ d BC A virtual Wapenaar (2004); Snieder (2004) ~ d d AB AC ~ d BC Asrc virtual Common Pair Gather (Dong et al., 2006) dt dt B C A B C e dt Benefit: SNR = N dt A3 A2 A1 B C Problem: Unknown Time & Shorter Src-Rec. Offset
10
2. Dedatum Virtual Refraction to Known Surface Point
Datuming Dedatuming real super-virtual d d AB BC ~ d AC Brec supervirtual * virtual d d AB AC ~ d BC Asrc virtual Asrc Brec A B C B C A B C * = Raw trace Virtual trace (Calvert+Bakulin, 2004) Super-virtual trace + The solution is the convolve the redatumed shot record with a real trace recorded at y from a new source position. The unknown time advance is cancelled out and result of the convolution is a virtual trace located at z. * = Liability: ? Time & Shorter Offset Benefit: SNR = N
11
Super-virtual Refraction Summary
d d AB AC ~ d BC Asrc virtual 1. Datum Refractions: ( Recip. Thm. Correl.) Asrc A B C A B C B C = Asrc = B C A B C * 2. Dedatum Virtual Traces: (Recip. Thm. Conv.) Brec d d AB BC ~ d AC supervirtual virtual In summary these are the three steps to generate a super virtual trace. 3. Assumption: Head Waves. Benefit: SNR = sqrt(N). Liability: No Diving Wave 4. Datum+Dedatum = 1st iteration iterative least squares datuming (Xue+GTS, 2009) 11
12
Outline Supervirtual Refraction Theory Synthetic OBS Results
Taiwan OBS Results Summary
13
Synthetic Results Marine Model Synthetic CSG Time (s)
12 12 Time (s) 12 km km 72 km 12 66 X (km) km Super-virtual CSG Noisy CSG 12 12 11 11 Time (s) Time (s) Time (s) Time (s) 16 16 km 30 66 X (km) 30 66 X (km) km
14
Outline Supervirtual Refraction Theory Synthetic OBS Results
Taiwan OBS Results Summary
15
Deconvolved Taiwan OBS Data (Kirk MicIntosh, UT Austin)
8 13 Time (s) Time (s) 26 128 km km 112 km
16
Summary * 1. Super-virtual Interferometry: Datum & Dedatum
2. Main Benefit: SNR = N vs 3. Key Assumption: Refractions = Head Waves 4. NMO for Reflections (Mayne, 1960s) for Refractions 5. Refraction Applications: FWI, AVO, Anisot., Time Lapse?
17
Acknowledgments Thank sponsors of CSIM Consortium: Aramco, BP, Chevron, Total, Pemex, Petrobras, Schlumberger-Western-Geco, Tullowoil Prof. Kirk McIntosh (UT Austin) Indian School Mines
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.