Presentation is loading. Please wait.

Presentation is loading. Please wait.

CorePure2 Chapter 1 :: Complex Numbers

Similar presentations


Presentation on theme: "CorePure2 Chapter 1 :: Complex Numbers"β€” Presentation transcript:

1 CorePure2 Chapter 1 :: Complex Numbers
Last modified: 15th February 2019

2 www.drfrostmaths.com Everything is completely free. Why not register?
Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets. With questions by: Dashboard with points, trophies, notifications and student progress. Questions organised by topic, difficulty and past paper. Teaching videos with topic tests to check understanding.

3 OVERVIEW 1 :: Exponential form of a complex number
2 :: Multiplying and dividing complex numbers 3 :: De Moivre’s Theorem If 𝑧=π‘Ÿ( cos πœƒ+𝑖 sin πœƒ ) , 𝑧 𝑛 = π‘Ÿ 𝑛 ( cos π‘›πœƒ +𝑖 sin π‘›πœƒ ) π‘π‘œπ‘  2πœƒ+𝑖 𝑠𝑖𝑛 2πœƒ β†’ 𝑒 2π‘–πœƒ If 𝑧 1 and 𝑧 2 are two complex numbers, what happens to their moduli when we find 𝑧 1 𝑧 2 . What happens to their arguments when we find 𝑧 1 𝑧 2 ? 4 :: De Moivre’s for Trigonometric Identities 6 :: Sums of series β€œGiven that 𝑧= cos πœ‹ 𝑛 +𝑖 sin πœ‹ 𝑛 , where 𝑛 is a positive integer, show that 1+𝑧+ 𝑧 2 +…+ 𝑧 π‘›βˆ’1 =1+𝑖 cot πœ‹ 2𝑛 ” β€œExpress cos 3πœƒ in terms of powers of cos πœƒ ” Note for teachers: Most of this content is the old FP2, but sums of series is new. 5 :: Roots β€œSolve 𝑧 4 =3+2𝑖”

4 RECAP :: Modulus-Argument Form
Im[z] (π‘₯,𝑦) If 𝒛=𝒙+π’Šπ’š (and suppose in this case 𝑧 is in the first quadrant), what was: π‘Ÿ πœƒ π‘Ÿ= 𝑧 = 𝒙 𝟐 + π’š 𝟐 πœƒ=arg 𝑧 = 𝐭𝐚𝐧 βˆ’πŸ π’š 𝒙 ? Re[z] ? ? modulus argument ? When βˆ’πœ‹<πœƒ<πœ‹ it is known as the principal argument. ? Then in terms of π‘Ÿ and πœƒ: 𝒙=𝒓 𝐜𝐨𝐬 𝜽 π’š=𝒓 𝐬𝐒𝐧 𝜽 𝒛=𝒙+π’Šπ’š =𝒓 𝒄𝒐𝒔 𝜽+π’Š π’“π’”π’Šπ’ 𝜽 =𝒓 𝐜𝐨𝐬 𝜽+π’Š 𝐬𝐒𝐧 𝜽 ? ? This is known as the modulus-argument form of 𝑧. ? ?

5 RECAP :: Modulus-Argument Form
𝒙+π’Šπ’š 𝒓 𝜽 Mod-arg form βˆ’1 1 πœ‹ 𝑧= cos πœ‹ +𝑖 sin πœ‹ 𝑖 πœ‹ 2 𝑧= cos πœ‹ 2 +𝑖 sin πœ‹ 2 1+𝑖 2 πœ‹ 4 𝑧= 2 cos πœ‹ 4 +𝑖 sin πœ‹ 4 βˆ’ 3 +𝑖 5πœ‹ 6 𝑧=2 cos 5πœ‹ 6 +𝑖 sin 5πœ‹ 6 ? ? ? ? ? ? ? ? ? ? ? ?

6 Exponential Form We’ve seen the Cartesian form a complex number 𝑧=π‘₯+𝑦𝑖 and the modulus-argument form 𝑧=π‘Ÿ( cos πœƒ+𝑖 sin πœƒ ) . But wait, there’s a third form! In the later chapter on Taylor expansions, you’ll see that you that you can write functions as an infinitely long polynomial: cos π‘₯ = βˆ’ π‘₯ 2 2! π‘₯ 4 4! βˆ’ π‘₯ 6 6! … sin π‘₯ = π‘₯ βˆ’ π‘₯ 3 3! π‘₯ 5 5! βˆ’β€¦ 𝑒 π‘₯ = π‘₯+ π‘₯ 2 2! + π‘₯ 3 3! + π‘₯ 4 4! + π‘₯ 5 5! + π‘₯ 6 6! + It looks like the cos π‘₯ and sin π‘₯ somehow add to give 𝑒 π‘₯ . The one problem is that the signs don’t quite match up. But 𝑖 changes sign as we raise it to higher powers. 𝑒 iπœƒ =1+π‘–πœƒ+ π‘–πœƒ 2 2! + π‘–πœƒ 3 3! + π‘–πœƒ 4 4! +… =1+π‘–πœƒβˆ’ πœƒ 2 2! βˆ’ 𝑖 πœƒ 3 3! + πœƒ 4 4! +… = 1βˆ’ πœƒ 2 2! + πœƒ 4 4! βˆ’ πœƒ 6 6! +… +𝑖 πœƒβˆ’ πœƒ 3 3! + πœƒ 5 5! βˆ’β€¦ = cos πœƒ+𝑖 sin πœƒ Holy smokes Batman! ? ? ? ?

7 Exponential Form ! Exponential form 𝑧=π‘Ÿ 𝑒 π‘–πœƒ ? ? ? ? ? ? ?
You need to be able to convert to and from exponential form. 𝒙+π’Šπ’š Mod-arg form Exp Form βˆ’1 𝑧= cos πœ‹ +𝑖 sin πœ‹ 𝑧= 𝑒 π‘–πœ‹ 2βˆ’3𝑖 𝑧= 13 𝑒 βˆ’0.983𝑖 2 cos πœ‹ 10 +𝑖 sin πœ‹ 10 𝑧= 2 𝑒 πœ‹π‘– 10 βˆ’1+𝑖 2 cos 3πœ‹ 4 +𝑖 sin 3πœ‹ 4 𝑧= 2 𝑒 3πœ‹π‘– 4 2 cos 3πœ‹ 5 +𝑖 sin 3πœ‹ 5 𝑧=2 𝑒 23πœ‹π‘– 5 𝒆 π’Šπ… +𝟏=𝟎 This is Euler’s identity. It relates the five most fundamental constants in maths! ? ? ? ? To get Cartesian form, put in modulus-argument form first. ? ? ? Notice this is not a principal argument.

8 A Final Example Use 𝑒 π‘–πœƒ = cos πœƒ +𝑖 sin πœƒ to show that cos πœƒ = 1 2 ( 𝑒 π‘–πœƒ + 𝑒 βˆ’π‘–πœƒ ) ? 𝑒 π‘–πœƒ = cos πœƒ +𝑖 sin πœƒ 𝑒 βˆ’π‘–πœƒ = cos βˆ’πœƒ +𝑖 sin βˆ’πœƒ = cos πœƒ βˆ’π‘– sin πœƒ ∴ 𝑒 π‘–πœƒ + 𝑒 βˆ’π‘–πœƒ =2 cos πœƒ ∴ cos πœƒ = 1 2 ( 𝑒 π‘–πœƒ + 𝑒 βˆ’π‘–πœƒ )

9 Exercise 1A Pearson Core Pure Year 2 Page 5

10 Multiplying and Dividing Complex Numbers
If 𝑧 1 = π‘Ÿ 1 cos πœƒ 1 +𝑖 sin πœƒ 1 and 𝑧 2 = π‘Ÿ 2 cos πœƒ 2 +𝑖 sin πœƒ 2 Then: 𝑧 1 𝑧 2 = 𝒓 𝟏 𝒓 𝟐 ( 𝐜𝐨𝐬 𝜽 𝟏 + 𝜽 𝟐 +π’Š 𝐬𝐒𝐧 ( 𝜽 𝟏 + 𝜽 𝟐 )) 𝑧 1 𝑧 2 = 𝒓 𝟏 𝒓 𝟐 ( 𝐜𝐨𝐬 𝜽 𝟏 βˆ’ 𝜽 𝟐 +π’Š 𝐬𝐒𝐧 ( 𝜽 𝟏 βˆ’ 𝜽 𝟐 )) ? ? i.e. If you multiply two complex numbers, you multiply the moduli and add the arguments, and if you divide them, you divide the moduli and subtract the arguments. Similarly if 𝑧 1 = π‘Ÿ 1 𝑒 𝑖 πœƒ 1 and 𝑧 2 = π‘Ÿ 2 𝑒 𝑖 πœƒ 2 Then: 𝑧 1 𝑧 2 = 𝒓 𝟏 𝒓 𝟐 𝒆 π’Š 𝜽 𝟏 + 𝜽 𝟐 𝑧 1 𝑧 2 = 𝒓 𝟏 𝒓 𝟐 𝒆 π’Š 𝜽 𝟏 βˆ’ 𝜽 𝟐 ? ?

11 Examples 3 cos 5πœ‹ 12 +𝑖 sin 5πœ‹ 12 Γ—4 cos πœ‹ 12 +𝑖 sin πœ‹ =𝟏𝟐 𝐜𝐨𝐬 𝝅 𝟐 +π’Š π’”π’Šπ’ 𝝅 𝟐 =𝟏𝟐 𝟎+π’Š 𝟏 =πŸπŸπ’Š 1 ? cos πœƒ βˆ’π‘– sin πœƒ can be written as cos βˆ’πœƒ +𝑖 sin (βˆ’πœƒ ) 2 cos πœ‹ 15 +𝑖 sin πœ‹ 15 Γ—3 cos 2πœ‹ 5 βˆ’π‘– sin 2πœ‹ =2 cos πœ‹ 15 +𝑖 sin πœ‹ 15 Γ—3 cos βˆ’ 2πœ‹ 5 +𝑖 sin βˆ’ 2πœ‹ =πŸ” 𝐜𝐨𝐬 βˆ’ 𝝅 πŸ‘ +π’Š π’”π’Šπ’ βˆ’ 𝝅 πŸ‘ =πŸ‘βˆ’πŸ‘ πŸ‘ π’Š 2 ? 3 Write in the form π‘Ÿ 𝑒 π‘–πœƒ : 2 cos πœ‹ 12 +𝑖 sin πœ‹ cos 5πœ‹ 6 +𝑖 sin 5πœ‹ 6 = 𝟐 𝐜𝐨𝐬 βˆ’ πŸ‘π… πŸ’ +π’Š 𝐬𝐒𝐧 βˆ’ πŸ‘π… πŸ’ = 𝟐 𝒆 βˆ’ πŸ‘π…π’Š πŸ’ ?

12 Test Your Understanding
Edexcel FP2(Old) June 2013 Q2 𝑧=5 3 βˆ’5𝑖 Find |𝑧| (1) arg⁑(𝑧) in terms of πœ‹ (2) 𝑀=2 cos πœ‹ 4 +𝑖 sin πœ‹ 4 (c) 𝑀 𝑧 (1) (d) arg 𝑀 𝑧 (2) ? ? ? ?

13 Exercise 1B Pearson Core Pure Year 2 Pages 7-8

14 Secret Alternative Way
De Moivre’s Theorem We saw that: 𝑧 1 𝑧 2 = 𝒓 𝟏 𝒓 𝟐 ( 𝐜𝐨𝐬 𝜽 𝟏 + 𝜽 𝟐 +π’Š 𝐬𝐒𝐧 ( 𝜽 𝟏 + 𝜽 𝟐 )) Can you think therefore what 𝑧 𝑛 is going to be? ! If 𝑧=π‘Ÿ π‘π‘œπ‘  πœƒ+𝑖 𝑠𝑖𝑛 πœƒ 𝒛 𝒏 = 𝒓 𝒏 𝐜𝐨𝐬 π’πœ½ +π’Š 𝐬𝐒𝐧 π’πœ½ This is known as De Moivre’s Theorem. ? Edexcel FP2(Old) June 2013 Q4 Prove by induction that 𝑧 𝑛 = π‘Ÿ 𝑛 cos π‘›πœƒ +𝑖 sin π‘›πœƒ They so went there... ? Secret Alternative Way ?

15 De Moivre’s Theorem for Exponential Form
If 𝑧=π‘Ÿ 𝑒 π‘–πœƒ then 𝒛 𝒏 = 𝒓 𝒆 π’Šπœ½ 𝒏 = 𝒓 𝒏 𝒆 π’Šπ’πœ½ ?

16 Examples Simplify cos 9πœ‹ 17 +𝑖 sin 9πœ‹ cos 2πœ‹ 17 βˆ’ 𝑖 sin 2πœ‹ = 𝒄𝒐𝒔 πŸ—π… πŸπŸ• +π’Š π’”π’Šπ’ πŸ—π… πŸπŸ• πŸ“ 𝒄𝒐𝒔 βˆ’ πŸπ… πŸπŸ• + π’Š π’”π’Šπ’ βˆ’ πŸπ… πŸπŸ• πŸ‘ = 𝐜𝐨𝐬 πŸ’πŸ“π… πŸπŸ• +π’Š 𝐬𝐒𝐧 πŸ’πŸ“π… πŸπŸ• 𝒄𝒐𝒔 βˆ’ πŸ”π… πŸπŸ• + π’Š π’”π’Šπ’ βˆ’ πŸ”π… πŸπŸ• = 𝐜𝐨𝐬 πŸ‘π… +π’Š 𝐬𝐒𝐧 πŸ‘π… = 𝐜𝐨𝐬 𝝅 +π’Š 𝐬𝐒𝐧 𝝅 =βˆ’πŸ Express 𝑖 7 in the form π‘₯+𝑖𝑦 where π‘₯,π‘¦βˆˆβ„. 𝟏+ πŸ‘ π’Š=𝟐( 𝐜𝐨𝐬 𝝅 πŸ‘ +π’Š 𝐬𝐒𝐧 𝝅 πŸ‘ ) Therefore 𝟏+ πŸ‘ π’Š πŸ• = 𝟐 πŸ• 𝐜𝐨𝐬 πŸ•π… πŸ‘ +π’Š 𝐬𝐒𝐧 πŸ•π… πŸ‘ =πŸπŸπŸ– 𝐜𝐨𝐬 𝝅 πŸ‘ +π’Š 𝐬𝐒𝐧 𝝅 πŸ‘ =πŸ”πŸ’+πŸ”πŸ’ πŸ‘ π’Š ? ?

17 Test Your Understanding
Edexcel FP2(Old) June 2010 Q4 ? ?

18 Exercise 1C Pearson Core Pure Year 2 Pages 10-11

19 Applications of de Moivre #1: Trig identities
Express cos 3πœƒ in terms of powers of cos πœƒ Is there someway we could use de Moivre’s theorem to get a cos 3πœƒ term? 𝐜𝐨𝐬 𝜽 +π’Š 𝐬𝐒𝐧 𝜽 πŸ‘ = 𝐜𝐨𝐬 πŸ‘πœ½ +π’Š 𝐬𝐒𝐧 πŸ‘πœ½ Could we use the LHS to get another expression? Use a Binomial expansion! cos πœƒ +𝑖 sin πœƒ 3 =𝟏 𝐜𝐨𝐬 πŸ‘ 𝜽 +πŸ‘ 𝐜𝐨𝐬 𝟐 𝜽 π’Š 𝐬𝐒𝐧 𝜽 +πŸ‘ 𝐜𝐨𝐬 𝜽 π’Š 𝐬𝐒𝐧 𝜽 𝟐 + π’Š 𝐬𝐒𝐧 𝜽 πŸ‘ = 𝐜𝐨𝐬 πŸ‘ 𝜽 +πŸ‘π’Š 𝐜𝐨𝐬 𝟐 𝜽 𝐬𝐒𝐧 𝜽 βˆ’πŸ‘ 𝐜𝐨𝐬 𝜽 𝐬𝐒𝐧 𝟐 𝜽 βˆ’π’Š 𝐬𝐒𝐧 πŸ‘ 𝜽 How could we then compare the two expressions? Equating real parts: 𝐜𝐨𝐬 πŸ‘πœ½ = 𝐜𝐨𝐬 πŸ‘ 𝜽 βˆ’πŸ‘ 𝐜𝐨𝐬 𝜽 𝐬𝐒𝐧 𝟐 𝜽 =… =πŸ’ 𝐜𝐨𝐬 πŸ‘ 𝜽 βˆ’πŸ‘ 𝐜𝐨𝐬 𝜽 ? ? ?

20 Applications of de Moivre #1: Trig identities
Express cos 6πœƒ in terms of cos πœƒ . sin 6πœƒ sin πœƒ , πœƒβ‰ π‘›πœ‹, in terms of cos πœƒ . cos πœƒ +𝑖 sin πœƒ 6 = cos 6πœƒ +𝑖 sin 6πœƒ = cos 6 πœƒ +6 cos 5 πœƒ 𝑖 sin πœƒ +… = cos 6 πœƒ +6𝑖 cos 5 πœƒ sin πœƒ βˆ’15 cos 4 πœƒ sin 2 πœƒ βˆ’20𝑖 cos 3 πœƒ sin 3 πœƒ +15 cos 2 πœƒ sin 4 πœƒ +6𝑖 cos πœƒ sin 5 πœƒ βˆ’ sin 6 πœƒ Equating real parts: cos 6πœƒ = cos 6 πœƒ βˆ’15 cos 4 πœƒ sin 2 πœƒ +15 cos 2 πœƒ sin 4 πœƒ βˆ’ sin 6 πœƒ =32 cos 6 πœƒ βˆ’48 cos 4 πœƒ +18 cos 2 πœƒ βˆ’1 Equating imaginary parts: (and simplifying) sin 6πœƒ =32 cos 5 πœƒ βˆ’32 cos 3 πœƒ +6 cos πœƒ

21 Test Your Understanding
Edexcel FP2(Old) June 2011 Q7 Use de Moivre’s theorem to show that (5) sin 5πœƒ =16 sin 5 πœƒ βˆ’20 sin 3 πœƒ +5 sin πœƒ Hence, given also that sin 3πœƒ =3 sin πœƒ βˆ’4 sin 3 πœƒ Find all the solutions of sin 5πœƒ =5 sin 3πœƒ in the interval 0β‰€πœƒ<2πœ‹. Give your answers to 3 decimal places. (6) ? ?

22 Finding identities for sin 𝑛 πœƒ and cos 𝑛 πœƒ
The technique we’ve seen allows us to write say cos 3πœƒ in terms of powers of cos πœƒ (e.g. cos 3 πœƒ ). Is it possible to do the opposite, to say express cos 3 πœƒ in terms of a linear combination of cos 3πœƒ and cos πœƒ (with no powers)? If 𝑧= cos πœƒ +𝑖 sin πœƒ , what is 𝑧+ 1 𝑧 and π‘§βˆ’ 1 𝑧 ? 𝟏 𝒛 = 𝒛 βˆ’πŸ = 𝐜𝐨𝐬 𝜽+π’Š 𝐬𝐒𝐧 𝜽 βˆ’πŸ = 𝐜𝐨𝐬 βˆ’πœ½ +π’Š 𝐬𝐒𝐧 βˆ’πœ½ = 𝐜𝐨𝐬 𝜽 βˆ’π’Š 𝐬𝐒𝐧 𝜽 βˆ΄π’›+ 𝟏 𝒛 =…=𝟐 𝐜𝐨𝐬 𝜽 π’›βˆ’ 𝟏 𝒛 =πŸπ’Š 𝐬𝐒𝐧 𝜽 And what is 𝑧 𝑛 + 1 𝑧 𝑛 ? Just using de Moivre’s theorem again: 𝒛 𝒏 + 𝟏 𝒛 𝒏 =𝟐 𝐜𝐨𝐬 π’πœ½ ? ? ! Results you need to use (but you don’t need to memorise) 𝑧+ 1 𝑧 =2 cos πœƒ 𝑧 𝑛 + 1 𝑧 𝑛 =2 cos π‘›πœƒ π‘§βˆ’ 1 𝑧 =2𝑖 sin πœƒ 𝑧 𝑛 βˆ’ 1 𝑧 𝑛 =2𝑖 sin π‘›πœƒ

23 Finding identities for sin 𝑛 πœƒ and cos 𝑛 πœƒ
Express cos 5 πœƒ in the form π‘Ž cos 5πœƒ +𝑏 cos 3πœƒ +𝑐 cos πœƒ Starting point? 2 cos πœƒ 5 = 𝑧+ 1 𝑧 cos 5 πœƒ = 𝑧 5 +5 𝑧 3 +10𝑧+ 10 𝑧 + 5 𝑧 𝑧 cos 5 πœƒ = 𝑧 𝑧 𝑧 𝑧 𝑧+ 1 𝑧 =2 cos 5πœƒ +5(2 cos 3πœƒ )+10(2 cos πœƒ ) Therefore cos 5 πœƒ= cos 5πœƒ cos 3πœƒ cos πœƒ ? Notice how the powers descend by 2 each time. ? ? Using identities below. ? 𝑧+ 1 𝑧 =2 cos πœƒ 𝑧 𝑛 + 1 𝑧 𝑛 =2 cos π‘›πœƒ π‘§βˆ’ 1 𝑧 =2𝑖 sin πœƒ 𝑧 𝑛 βˆ’ 1 𝑧 𝑛 =2𝑖 sin π‘›πœƒ

24 Finding identities for sin 𝑛 πœƒ and cos 𝑛 πœƒ
Prove that sin 3 πœƒ =βˆ’ 1 4 sin 3πœƒ sin πœƒ Starting point? 2𝑖 sin πœƒ 3 = π‘§βˆ’ 1 𝑧 3 βˆ’8𝑖 sin 3 πœƒ = 𝑧 3 βˆ’3𝑧+ 3 𝑧 βˆ’ 1 𝑧 = 𝑧 3 βˆ’ 1 𝑧 3 βˆ’3 π‘§βˆ’ 1 𝑧 =2𝑖 sin 3πœƒ βˆ’3(2𝑖 sin πœƒ ) Therefore dividing by βˆ’8𝑖: sin 3 πœƒ= βˆ’ 1 4 sin 3πœƒ sin πœƒ ? Fro Speed Tip: Remember that terms in such an expansion oscillate between positive and negative. ? ? Again using identities. ? 𝑧+ 1 𝑧 =2 cos πœƒ 𝑧 𝑛 + 1 𝑧 𝑛 =2 cos π‘›πœƒ π‘§βˆ’ 1 𝑧 =2𝑖 sin πœƒ 𝑧 𝑛 βˆ’ 1 𝑧 𝑛 =2𝑖 sin π‘›πœƒ

25 Test Your Understanding
(a) Express sin 4 πœƒ in the form π‘Ž cos 4πœƒ +𝑏 cos 2πœƒ +𝑐 (b) Hence find the exact value of 0 πœ‹ 2 sin 4 πœƒ π‘‘πœƒ 2𝑖 sin πœƒ 4 = π‘§βˆ’ 1 𝑧 sin 4 πœƒ = 𝑧 4 βˆ’4 𝑧 2 +6βˆ’ 4 𝑧 𝑧 = 𝑧 𝑧 4 βˆ’4 𝑧 𝑧 =2 cos 4πœƒ βˆ’4 2 cos 2πœƒ +6 ∴ sin 4 πœƒ = 1 8 cos 4πœƒ βˆ’ 1 2 cos 2πœƒ + 3 8 0 πœ‹ 2 sin 4 πœƒ π‘‘πœƒ = sin 4πœƒ βˆ’ 1 4 sin 2πœƒ πœƒ 0 πœ‹ 2 = 3πœ‹ 16 Starting point? ? ? ? ? ? 𝑧+ 1 𝑧 =2 cos πœƒ 𝑧 𝑛 + 1 𝑧 𝑛 =2 cos π‘›πœƒ π‘§βˆ’ 1 𝑧 =2𝑖 sin πœƒ 𝑧 𝑛 βˆ’ 1 𝑧 𝑛 =2𝑖 sin π‘›πœƒ

26 Exercise 1D Pearson Core Pure Year 2 Pages 14-15

27 Sums of Series The formula for the sum of a geometric series also applies to complex numbers: For 𝑀,π‘§βˆˆβ„‚, Ξ£ π‘Ÿ=0 π‘›βˆ’1 𝑀 𝑧 π‘Ÿ =𝑀+𝑀𝑧+𝑀 𝑧 2 +…+𝑀 𝑧 π‘›βˆ’1 = 𝑀 𝑧 𝑛 βˆ’1 π‘§βˆ’1 Ξ£ π‘Ÿ=0 ∞ 𝑀 𝑧 π‘Ÿ =𝑀+𝑀𝑧+𝑀 𝑧 2 +…+𝑀 𝑧 π‘›βˆ’1 = 𝑀 π‘§βˆ’1 provided 𝑧 <1 No need to write these down. These are just 𝑆 𝑛 and 𝑆 ∞ for geometric series. Side Note: When we covered series before, |…| was understood to give the β€˜unsigned value’ of a quantity. But this can just be thought of as the 1D version of finding the magnitude of a vector/complex number. e.g. βˆ’4 =4 because -4 has a distance of 4 from 0 on a number line just as =5 because (3,4) has a distance of 5 from the origin.

28 Example [Textbook] Given that 𝑧= cos πœ‹ 𝑛 +𝑖 sin πœ‹ 𝑛 , where 𝑛 is a positive integer, show that 1+𝑧+ 𝑧 2 +…+ 𝑧 π‘›βˆ’1 =1+𝑖 cot πœ‹ 2𝑛 1+𝑧+ 𝑧 2 +…+ 𝑧 π‘›βˆ’1 = 𝑧 𝑛 βˆ’1 π‘§βˆ’1 = 𝑒 πœ‹π‘– 𝑛 𝑛 βˆ’1 𝑒 πœ‹π‘– 𝑛 βˆ’1 = 𝑒 πœ‹π‘– βˆ’1 𝑒 πœ‹π‘– 𝑛 βˆ’1 = βˆ’2 𝑒 πœ‹π‘– 𝑛 βˆ’1 =βˆ’ βˆ’2 𝑒 βˆ’ πœ‹π‘– 2𝑛 𝑒 πœ‹π‘– 2𝑛 βˆ’ 𝑒 βˆ’ πœ‹π‘– 2𝑛 =βˆ’ βˆ’2 𝑒 βˆ’ πœ‹π‘– 2𝑛 2𝑖 sin πœ‹ 2𝑛 = βˆ’2𝑖 𝑒 βˆ’ πœ‹π‘– 2𝑛 2 𝑖 2 sin πœ‹ 2𝑛 = 𝑖 𝑒 βˆ’ πœ‹π‘– 2𝑛 sin πœ‹ 2𝑛 = 𝑖 cos βˆ’ πœ‹ 2𝑛 +𝑖 sin βˆ’ πœ‹ 2𝑛 sin πœ‹ 2𝑛 = 𝑖 cos πœ‹ 2𝑛 βˆ’π‘– sin πœ‹ 2𝑛 sin πœ‹ 2𝑛 = sin πœ‹ 2𝑛 +𝑖 cos 2 πœ‹ 𝑛 sin πœ‹ 2𝑛 =1+𝑖 cot πœ‹ 2𝑛 ? IMPORTANT: One of our earlier identities: 𝑧 𝑛 βˆ’ 𝑧 βˆ’π‘› =2𝑖 sin π‘›πœƒ Thus if we had an expression of the form 𝑒 π‘–πœƒ βˆ’1, we could cleverly factorise out 𝑒 π‘–πœƒ 2 (i.e. half the power) to get 𝑒 π‘–πœƒ 2 𝑒 π‘–πœƒ 2 βˆ’ 𝑒 βˆ’ π‘–πœƒ 2 β†’ 𝑒 π‘–πœƒ 2 2𝑖 sin πœƒ 2 Thus where 𝑒 π‘–πœƒ βˆ’1 occurs in a fraction, multiply numerator and denominator by 𝑒 βˆ’ π‘–πœƒ 2 so that we have just 𝑒 π‘–πœƒ 2 βˆ’ 𝑒 βˆ’ π‘–πœƒ 2

29 Let’s practise that hard bit…
If 𝒛=𝒄𝒐𝒔 𝜽+π’Š π’”π’Šπ’ 𝜽= 𝒆 π’Šπœ½ 𝑧 𝑛 βˆ’ 𝑧 βˆ’π‘› =2𝑖 sin π‘›πœƒ Thus if we had an expression of the form 𝑒 π‘–πœƒ βˆ’1, we could cleverly factorise out 𝑒 π‘–πœƒ 2 (i.e. half the power) to get 𝑒 π‘–πœƒ 2 𝑒 π‘–πœƒ 2 βˆ’ 𝑒 βˆ’ π‘–πœƒ 2 β†’ 𝑒 π‘–πœƒ 2 2𝑖 sin πœƒ 2 Thus where 𝑒 π‘–πœƒ βˆ’1 occurs in a fraction, multiply numerator and denominator by 𝑒 βˆ’ π‘–πœƒ 2 so that we have just 𝑒 π‘–πœƒ 2 βˆ’ 𝑒 βˆ’ π‘–πœƒ 2 ? 3 𝑒 2π‘–πœƒ βˆ’1 = πŸ‘ 𝒆 βˆ’π’Šπœ½ 𝒆 π’Šπœ½ βˆ’ 𝒆 βˆ’π’Šπœ½ = πŸ‘ 𝒆 βˆ’π’Šπœ½ πŸπ’Š 𝐬𝐒𝐧 𝜽 ? The 𝑛 is 2 because if 𝑧= 𝑒 π‘–πœƒ then 𝑧 2 = 𝑒 2π‘–πœƒ 4 𝑒 π‘–πœƒ 𝑒 4π‘–πœƒ βˆ’1 = πŸ’ 𝒆 βˆ’π’Šπœ½ 𝒆 πŸπ’Šπœ½ βˆ’ 𝒆 βˆ’πŸπ’Šπœ½ = πŸ’ 𝒆 βˆ’π’Šπœ½ πŸπ’Š 𝐬𝐒𝐧 𝟐𝜽 1 𝑒 π‘–πœƒ 3 βˆ’1 = 𝒆 βˆ’ π’Šπœ½ πŸ” 𝒆 π’Šπœ½ πŸ” βˆ’ 𝒆 βˆ’ π’Šπœ½ πŸ” = 𝒆 βˆ’ π’Šπœ½ πŸ” πŸπ’Š 𝐬𝐒𝐧 𝜽 πŸ” ?

30 Using mod-arg form to split summation
𝑒 π‘–πœƒ + 𝑒 2π‘–πœƒ + 𝑒 3π‘–πœƒ +…+ 𝑒 π‘›π‘–πœƒ is a geometric series, ∴ 𝑒 π‘–πœƒ + 𝑒 2π‘–πœƒ + 𝑒 3π‘–πœƒ +…+ 𝑒 π‘›π‘–πœƒ = 𝑒 π‘–πœƒ 𝑒 π‘›π‘–πœƒ βˆ’1 𝑒 π‘–πœƒ βˆ’1 Converting each exponential term to modulus-argument form would allow us to consider the real and imaginary parts of the series separately: 𝑒 π‘–πœƒ + 𝑒 2π‘–πœƒ + 𝑒 3π‘–πœƒ +…+ 𝑒 π‘›π‘–πœƒ = cos πœƒ+𝑖 sin πœƒ + cos 2πœƒ+𝑖 sin 2πœƒ +… = cos πœƒ + cos 2πœƒ +… +𝑖 sin πœƒ + sin 2πœƒ +… Thus cos πœƒ + cos 2πœƒ +… is the real part of 𝑒 π‘–πœƒ 𝑒 π‘›π‘–πœƒ βˆ’1 𝑒 π‘–πœƒ βˆ’1 and sin πœƒ + sin 2πœƒ +… the imaginary part.

31 Example [Textbook] 𝑆= 𝑒 π‘–πœƒ + 𝑒 2π‘–πœƒ + 𝑒 3π‘–πœƒ +…+ 𝑒 8π‘–πœƒ , for πœƒβ‰ 2π‘›πœ‹, where 𝑛 is an integer. Show that 𝑆= 𝑒 9π‘–πœƒ 2 sin 4πœƒ sin πœƒ 2 Let 𝑃= cos πœƒ + cos 2πœƒ + cos 3πœƒ +…+ cos 8πœƒ and 𝑄= sin πœƒ + sin 2πœƒ +…+ sin 8πœƒ (b) Use your answer to part a to show that 𝑃= cos 9πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ 2 and find similar expressions for 𝑄 and 𝑄 𝑃 𝑒 π‘–πœƒ + 𝑒 2π‘–πœƒ + 𝑒 3π‘–πœƒ +…+ 𝑒 8π‘–πœƒ = 𝑒 π‘–πœƒ 𝑒 π‘–πœƒ 8 βˆ’1 𝑒 π‘–πœƒ βˆ’1 = 𝑒 π‘–πœƒ 𝑒 π‘–πœƒ 8 βˆ’1 𝑒 π‘–πœƒ βˆ’1 = 𝑒 π‘–πœƒ 𝑒 8π‘–πœƒ βˆ’1 𝑒 π‘–πœƒ βˆ’1 = 𝑒 π‘–πœƒ 2 𝑒 8π‘–πœƒ βˆ’1 𝑒 π‘–πœƒ 2 βˆ’ 𝑒 βˆ’ π‘–πœƒ 2 = 𝑒 π‘–πœƒ 2 𝑒 8π‘–πœƒ βˆ’1 2𝑖 sin πœƒ 2 = 𝑖 𝑒 π‘–πœƒ 2 𝑒 8π‘–πœƒ βˆ’1 2 𝑖 2 sin πœƒ 2 = 𝑒 9π‘–πœƒ 2 sin 4πœƒ sin πœƒ 2 a ? We can again use the trick of multiplying 𝑒 π‘–πœƒ βˆ’1 by 𝑒 βˆ’ π‘–πœƒ 2 𝑧 𝑛 βˆ’ 𝑧 βˆ’π‘› =2𝑖 sin π‘›πœƒ

32 Example [Textbook] 𝑆= 𝑒 π‘–πœƒ + 𝑒 2π‘–πœƒ + 𝑒 3π‘–πœƒ +…+ 𝑒 8π‘–πœƒ , for πœƒβ‰ 2π‘›πœ‹, where 𝑛 is an integer. Show that 𝑆= 𝑒 9π‘–πœƒ 2 sin 4πœƒ sin πœƒ 2 Let 𝑃= cos πœƒ + cos 2πœƒ + cos 3πœƒ +…+ cos 8πœƒ and 𝑄= sin πœƒ + sin 2πœƒ +…+ sin 8πœƒ (b) Use your answer to part a to show that 𝑃= cos 9πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ 2 and find similar expressions for 𝑄 and 𝑄 𝑃 First note that 𝑆= 𝑒 9π‘–πœƒ 2 sin 4πœƒ sin πœƒ 2 = 𝑒 9π‘–πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ 2 But also, by expressing each term within 𝑆= 𝑒 π‘–πœƒ + 𝑒 2πœƒ … in modulus-argument form, we have 𝑆=𝑃+𝑖𝑄 βˆ΄π‘ƒ=𝑅𝑒 𝑆 =𝑅𝑒 𝑒 9π‘–πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ = cos 9πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ 2 Similarly: 𝑄=πΌπ‘š 𝑆 = sin 9πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ 2 𝑄 𝑃 = sin 9πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ 2 cos 9πœƒ 2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ 2 = tan 9πœƒ 2 b ?

33 Exercise 1E Pearson Core Pure Year 2 Pages 18-19

34 We have so far used de Moivre’s theorem when 𝑛 was an integer.
Applications of de Moivre #2: Roots 𝑧 𝑛 = π‘Ÿ 𝑛 cos π‘›πœƒ +𝑖 sin π‘›πœƒ We have so far used de Moivre’s theorem when 𝑛 was an integer. It also works however when 𝑛 is a rational number! (proof not required) Solve 𝑧 3 =1 Plot these roots on an Argand diagram. ? The modulus-argument form of 1 is 1( π‘π‘œπ‘  0 +𝑖 𝑠𝑖𝑛 0 ) thus: 𝑧 3 =1 cos 0 +𝑖 sin =1( cos 0+2π‘˜πœ‹ +𝑖 sin 0+2π‘˜πœ‹ 𝑧 = cos 2π‘˜πœ‹ +𝑖 sin 2π‘˜πœ‹ = cos 2π‘˜πœ‹ 3 +𝑖 sin 2π‘˜πœ‹ 3 π‘˜=0, 𝑧 1 = cos 0 +𝑖 sin 0 =1 π‘˜=1, 𝑧 2 = cos 2πœ‹ 3 +𝑖 sin 2πœ‹ 3 =βˆ’ 1 2 +𝑖 π‘˜=2, 𝑧 3 = cos 4πœ‹ 3 +𝑖 sin 4πœ‹ 3 =βˆ’ 1 2 βˆ’π‘– These are known as the β€˜cube roots of unity’ (more on this in a bit). In Pure Year 1 I mentioned in a side note that by the Fundamental Law of Arithmetic, a polynomial of order 𝑛 has 𝑛 solutions (some potentially repeated and some potentially not real). So this equation has 3 solutions. ? 2πœ‹ 3 𝑧 2 𝑧 1 𝑧 3 1 is always a root – the rest are spread out equally distributed. We’ll see why we get this pattern on the next slide.

35 More on Roots of Unity The solutions to 𝑧 𝑛 =1 are known as the β€œroots of unity” (1 is a β€œunit”). Why are they nicely spread out? 1 is clearly a root as 1 𝑛 =1. In the method on the previous slide, we ended up adding 2π‘˜πœ‹ 𝑛 to the argument, but left the modulus untouched. If 𝑛=3 then this rotates the line 2πœ‹ 3 =120Β° each time. When π‘˜=𝑛 then we would have rotated 2π‘›πœ‹ 𝑛 =2πœ‹ so end up where we started. 2πœ‹ 3 𝑧 2 𝑧 1 𝑧 3 𝒛 πŸ‘ =𝟏 Then by De Moivre’s, then πœ” 2 would be: πœ” 2 = cos 2πœ‹ 3 +𝑖 sin 2πœ‹ = cos 4πœ‹ 3 +𝑖 sin 4πœ‹ 3 i.e. the next root! Therefore, the roots can be represented as 1, πœ”, πœ” 2 . Since the resultant β€˜vector’ is 0, then 1+πœ”+ πœ” 2 =0. Formal Proof: Geometric series where π‘Ž=1 and π‘Ÿ=πœ” and 𝑛=𝑛. 𝑆 𝑛 = π‘Ž π‘Ÿ 𝑛 βˆ’1 π‘Ÿβˆ’1 = πœ” 𝑛 βˆ’1 πœ”βˆ’1 = 1βˆ’1 πœ”βˆ’1 =0 Suppose this root is πœ” (Greek letter β€œomega”)… πœ”= cos 2πœ‹ 3 +𝑖 sin 2πœ‹ 3 ! If 𝑧 𝑛 =1 and πœ”= 𝑒 2πœ‹π‘– 𝑛 then 1,πœ”, πœ” 2 ,…, πœ” π‘›βˆ’1 are the roots and 1+πœ”+ πœ” 2 +…+ πœ” π‘›βˆ’1 =0

36 Example ? [Textbook] Solve 𝑧 4 =2+2 3 𝑖
𝑧 4 =4 cos πœ‹ 3 +𝑖 sin πœ‹ =4 cos πœ‹ 3 +2π‘˜πœ‹ +𝑖 sin ( πœ‹ 3 +2π‘˜πœ‹ ) 𝑧 = cos πœ‹ π‘˜πœ‹ 4 +𝑖 sin πœ‹ π‘˜πœ‹ 4 π‘˜=0, 𝑧= 2 cos πœ‹ 12 +𝑖 sin πœ‹ 12 π‘˜=1, 𝑧= 2 cos 7πœ‹ 12 +𝑖 sin 7πœ‹ 12 π‘˜=2, 𝑧= 2 cos 13πœ‹ 12 +𝑖 sin 13πœ‹ = 2 cos βˆ’ 11πœ‹ 𝑖 sin βˆ’ 11πœ‹ 12 π‘˜=3, 𝑧=… We need principal roots. Alternative is to use π‘˜=0, 1, βˆ’1, βˆ’2 instead of 0, 1, 2, 3, which will give your principal roots directly.

37 Test Your Understanding
Edexcel FP2(Old) June 2012 Q3 Express the complex number βˆ’ 𝑖 in the form π‘Ÿ cos πœƒ+𝑖 sin πœƒ , βˆ’πœ‹<πœƒβ‰€πœ‹ (3) Solve the equation 𝑧 4 =βˆ’ i giving the roots in the form π‘Ÿ cos πœƒ +𝑖 sin πœƒ , βˆ’πœ‹<πœƒβ‰€πœ‹ (5) ? ? You can avoid the previous large amount of working by just dividing your angle by the power (4), and adding/subtracting increments of 2πœ‹ again divided by the power.

38 Exercise 1F Pearson Core Pure Year 2 Pages 24-25

39 Solving Geometric Problems
We already saw in the previous exercise that the roots of an equation such as that on the left give evenly spaced points in the Argand diagram, because the modulus remained the same but we kept adding 2πœ‹ 𝑛 to the argument. These points formed a regular hexagon, and in general for 𝑧 𝑛 =𝑠, form a regular 𝑛-agon. Recall that πœ” is the first root of unity: cos 2πœ‹ 𝑛 +𝑖 sin 2πœ‹ 𝑛 . This has modulus 1 and argument 2πœ‹ 𝑛 . 𝑧 6 =7+24𝑖 Suppose 𝒛 𝟏 was the first root of 𝑧 6 =7+24𝑖. Then consider the product 𝑧 1 πœ”. What happens? Multiplying these multiplies the moduli. But 𝝎 =𝟏 therefore the modulus of 𝒛 𝟏 is unaffected. But we also add the arguments. 𝐚𝐫𝐠 𝝎 = πŸπ… 𝒏 so multiplying by 𝝎 rotates 𝒛 𝟏 by this. We can see therefore that it gives us the next root, i.e. 𝒛 𝟐 = 𝒛 𝟏 𝝎. ! If 𝑧 1 is one root of the equation 𝑧 𝑛 =𝑠, and 1,πœ”, πœ” 2 ,…, πœ” π‘›βˆ’1 are the 𝑛th roots of unity, then the roots of 𝑧 𝑛 =𝑠 are given by 𝑧 1 , 𝑧 1 πœ”, 𝑧 1 πœ” 2 ,…, 𝑧 1 πœ” π‘›βˆ’1 . ?

40 Example [Textbook] The point 𝑃 3 ,1 lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin. Find the coordinates of the other vertices of the triangle. Find the area of the triangle. a ? Convert 3 +𝑖 to either exponential of modulus-argument form. We can then rotate the point 120Β° around origin (and again) by multiplying by πœ”. 3 +𝑖=2 𝑒 πœ‹ 6 𝑖 and πœ”= 𝑒 2πœ‹ 3 𝑖 Next vertex: 2 𝑒 πœ‹ 6 𝑖 Γ— 𝑒 2πœ‹ 3 𝑖 =2 𝑒 5πœ‹ 6 𝑖 =βˆ’ 3 +𝑖 β†’ βˆ’ 3 ,1 2 𝑒 5πœ‹ 6 𝑖 Γ— 𝑒 2πœ‹ 3 𝑖 =2 𝑒 3πœ‹ 2 𝑖 =2 𝑒 βˆ’ πœ‹ 2 𝑖 =βˆ’2𝑖 β†’ (0,βˆ’2) Area = 1 2 Γ—π‘π‘Žπ‘ π‘’Γ—β„Žπ‘’π‘–π‘”β„Žπ‘‘ = 1 2 Γ—2 3 Γ—3 =3 3 ? Diagram (βˆ’ 3 ,1) ( 3 ,1) (0,βˆ’2) π‘₯ 𝑦 b ?

41 Exercise 1G Pearson Core Pure Year 2 Pages 26-27


Download ppt "CorePure2 Chapter 1 :: Complex Numbers"

Similar presentations


Ads by Google