Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tutorial 2: Autocorrelation

Similar presentations


Presentation on theme: "Tutorial 2: Autocorrelation"โ€” Presentation transcript:

1 Tutorial 2: Autocorrelation
Matthew Robson University of York Econometrics 2

2 Autocorrelation Autocorrelation emerges when the errors in different time-periods are correlated. When ๐‘๐‘œ๐‘ฃ ๐‘ข ๐‘– , ๐‘ข ๐‘— โ‰ 0, ๐‘–โ‰ ๐‘— Positive Autocorrelation Negative Autocorrelation (Gujarati and Porter, 2009)

3 Assignment 7 Estimate the log-linear consumption function:
๐ฟ๐‘œ๐‘” ๐ถ ๐‘ก = ๐›ฝ 0 + ๐›ฝ 1 ๐ฟ๐‘œ๐‘” ๐ผ ๐‘ก + ๐›ฝ 2 ๐ฟ๐‘œ๐‘” ๐‘Š ๐‘ก + ๐›ฝ 4 ๐‘Ÿ ๐‘ก + ๐‘ข ๐‘ก Where: ๐ถ ๐‘ก = consumption, ๐ผ ๐‘ก = real disposable income ๐‘Š ๐‘ก = wealth, ๐‘Ÿ ๐‘ก = interest rate For the period 1967q1 โ€“ 2002q4. (1)

4 Descriptive Statistics

5 Results ๐ฟ๐‘œ๐‘” ๐ถ ๐‘ก = ๐ฟ๐‘œ๐‘” ๐ผ ๐‘ก ๐ฟ๐‘œ๐‘” ๐‘Š ๐‘ก +โˆ’ ๐‘Ÿ ๐‘ก + ๐‘ข ๐‘ก

6 Predicted Values

7 Autocorrelation

8 Question a) Test for autocorrelation using the Durbin-Watson test statistic given by PC-GIVE. What are the limitations of this test? How does the Breusch-Godfrey test overcome some of these limitations?

9 Durbin-Watson Test Defined as: ๐‘‘= ๐‘ก=2 ๐‘ก=๐‘› ๐‘ข ๐‘ก โˆ’ ๐‘ข ๐‘กโˆ’ ๐‘ก=1 ๐‘ก=๐‘› ๐‘ข ๐‘ก 2

10 Durbin-Watson Test Durbin-Watson Statistic: ๐‘‘ = 0.439 ๐‘=144, ๐‘˜ = 3
๐‘€๐‘œ๐‘‘๐‘’๐‘™โ†’ ๐‘‡๐‘’๐‘ ๐‘กโ†’ ๐‘‡๐‘’๐‘ ๐‘กโ€ฆโ†’๐‘…๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘Ž๐‘ข๐‘ก๐‘œ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘ , ๐‘ƒ๐‘œ๐‘Ÿ๐‘ก๐‘š๐‘Ž๐‘›๐‘ก๐‘’๐‘Ž๐‘ข ๐‘Ž๐‘›๐‘‘ ๐ท๐‘Š Durbin-Watson Statistic: ๐‘‘ = 0.439 ๐‘=144, ๐‘˜ = 3 ๐›ผ=0.05 โ†’ ๐‘‘ ๐‘ข =1.774, ๐‘‘ ๐ฟ =1.693 ๐›ผ=0.01โ†’ ๐‘‘ ๐‘ข =1.665, ๐‘‘ ๐ฟ =1.584 ๐ป 0 : no +ve autocorrelation, ๐ป 0 โˆ— : no -ve autocorrelation The ๐‘‘ statistic is less than the critical ๐‘‘ ๐ฟ value โˆด we reject the null hypothesis ( ๐ป 0 ) of no +ve correlation at both 5% and 1% levels.

11 Question a) Limitations of Durbin-Watson statistic
Lagged residuals only to first order Zones of indecision Not appropriate when lagged dependant variable is included The Breusch-Godfrey test allows: Higher order autocorrelation Still appropriate when a lagged dependant variable is included

12 Question b) Test for autocorrelation using the Breusch-Godfrey test statistic given by PC-GIVE. What (default) order of autocorrelation is being tested for here?

13 Question b) ๐‘€๐‘œ๐‘‘๐‘’๐‘™โ†’ ๐‘‡๐‘’๐‘ ๐‘กโ†’ ๐‘‡๐‘’๐‘ ๐‘กโ€ฆโ†’ ๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ ๐‘Ž๐‘ข๐‘ก๐‘œ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ก๐‘’๐‘ ๐‘ก
The order of the autocorrelation being tested here is 5th, e.gโ€ฆ ๐‘ข ๐‘ก = ๐œŒ 1 ๐‘ข ๐‘กโˆ’1 + ๐œŒ 2 ๐‘ข ๐‘กโˆ’2 + ๐œŒ 3 ๐‘ข ๐‘กโˆ’3 + ๐œŒ 4 ๐‘ข ๐‘กโˆ’4 + ๐œŒ 5 ๐‘ข ๐‘กโˆ’5 + ๐œ€ ๐‘ก Test statistic is ~ ๐œ’ ๐œ’ = , ๐œ’ = โˆด We reject ๐ป 0 (of no autocorrelation) at both 5% and 1% levels.

14 Question c) Construct the Breusch-Godfrey test for up to second order autocorrelation and test using the F statistic.

15 Breusch-Godfrey Test Method
Estimate the model and save the residuals ( ๐‘ข ๐‘ก ) Estimate: ๐‘ข ๐‘ก = ๐›ผ 0 + ๐›ผ 1 log ๐ผ ๐‘ก + ๐›ผ 2 log ๐‘Š ๐‘ก + ๐›ผ 3 ๐‘Ÿ ๐‘ก + ๐›ผ 4 ๐‘ข ๐‘กโˆ’1 + ๐›ผ 5 ๐‘ข ๐‘กโˆ’2 + ๐œ€ ๐‘ก Note the ๐‘… 2 from Step 2 and calculate the ๐œ’ 2 test statistic as: ๐‘โˆ’๐‘ž ๐‘… 2 ~ ๐œ’ ๐‘ž 2 Where: ๐‘ = ๐‘“๐‘ข๐‘™๐‘™ ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘ž = ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘”๐‘  (๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘Ž๐‘ข๐‘ก๐‘œ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›) Compare the test statistic from Step 3 with the ๐œ’ 2 critical values at the 5% and 10% levels.

16 Breusch-Godfrey Test Construct the Breusch-Godfrey test, for second order autocorrelation, e.g. ๐‘ข ๐‘ก = ๐œŒ 1 ๐‘ข ๐‘กโˆ’1 + ๐œŒ 2 ๐‘ข ๐‘กโˆ’2 ๐ป 0 : ๐‘›๐‘œ ๐‘Ž๐‘ข๐‘ก๐‘œ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, ๐œŒ 1 = ๐œŒ 2 =0 ๐ป 1 : ๐ป 0 ๐‘–๐‘  ๐‘“๐‘Ž๐‘™๐‘ ๐‘’ Test Statistic: ๐‘โˆ’๐‘ž ๐‘… 2 = 44โˆ’ ~ ๐œ’ 2 2 ๐œ’ =5.991 ๐œ’ =9.210 โˆด We reject the null hypothesis of no autocorrelation at both 5% and 1% ๐‘ข ๐‘ก = ๐›ผ 0 + ๐›ผ 1 log ๐ผ ๐‘ก + ๐›ผ 2 log ๐‘Š ๐‘ก + ๐›ผ 3 ๐‘Ÿ ๐‘ก + ๐›ผ 4 ๐‘ข ๐‘กโˆ’1 + ๐›ผ 5 ๐‘ข ๐‘กโˆ’2 + ๐œ€ ๐‘ก

17 Breusch-Godfrey Test (F-test)
Method Estimate the model and save the residuals ( ๐‘ข ๐‘ก ) Estimate two factor models: RES: ๐‘ข ๐‘ก = ๐›ผ 0 + ๐›ผ 1 log ๐ผ ๐‘ก + ๐›ผ 2 log ๐‘Š ๐‘ก + ๐›ผ 3 ๐‘Ÿ ๐‘ก + ๐œ€ ๐‘ก UNRES: ๐‘ข ๐‘ก = ๐›ผ 0 + ๐›ผ 1 log ๐ผ ๐‘ก + ๐›ผ 2 log ๐‘Š ๐‘ก + ๐›ผ 3 ๐‘Ÿ ๐‘ก + ๐›ผ 4 ๐‘ข ๐‘กโˆ’1 + ๐›ผ 5 ๐‘ข ๐‘กโˆ’2 + ๐œ€ ๐‘ก Over the same sample i.e. ๐‘โˆ’2 = ๐‘โˆ’๐‘ž = 144โˆ’2 Undertake the F-test for: ๐ป 0 : ๐›ผ 4 = ๐›ผ 5 =0 ๐น= ๐‘… ๐‘ˆ๐‘๐‘…๐ธ๐‘† 2 โˆ’ ๐‘… ๐‘…๐ธ๐‘† 2 ๐‘ž 1โˆ’ ๐‘… ๐‘ˆ๐‘๐‘…๐ธ๐‘† 2 ๐‘ โˆ— โˆ’๐พ Where: ๐‘ž =๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘˜ = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘  ๐‘–๐‘  ๐‘ˆ๐‘๐‘…๐ธ๐‘† ๐‘ โˆ— = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘œ๐‘๐‘ ๐‘’๐‘Ÿ๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘ˆ๐‘๐‘…๐ธ๐‘† ๐‘ ๐‘Ž๐‘š๐‘๐‘™๐‘’ (๐‘โˆ’๐‘ž)

18 Breusch-Godfrey Test (F-test)
Construct the Breusch-Godfrey test, for second order autocorrelation. ๐ป 0 : ๐‘›๐‘œ ๐‘Ž๐‘ข๐‘ก๐‘œ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, ๐›ผ 4 = ๐›ผ 5 =0 ๐ป 1 : ๐ป 0 ๐‘–๐‘  ๐‘“๐‘Ž๐‘™๐‘ ๐‘’ Test Statistic: ๐น= ๐‘… ๐‘ˆ๐‘๐‘…๐ธ๐‘† 2 โˆ’ ๐‘… ๐‘…๐ธ๐‘† 2 ๐‘ž 1โˆ’ ๐‘… ๐‘ˆ๐‘๐‘…๐ธ๐‘† 2 ๐‘ โˆ— โˆ’๐พ ๐น= โˆ’ ร— 10 โˆ’ โˆ’ โˆ’6 ๐น= ~ ๐น ๐‘ž, ๐‘ โˆ— โˆ’๐พ ๐น 2, โ‰ˆ3.07, ๐น 2, โ‰ˆ4.79 โˆด We reject the null hypothesis of no autocorrelation at both 5% and 1% ๐‘…๐ธ๐‘†: ๐‘ข ๐‘ก = ๐›ผ 0 + ๐›ผ 1 log ๐ผ ๐‘ก + ๐›ผ 2 log ๐‘Š ๐‘ก + ๐›ผ 3 ๐‘Ÿ ๐‘ก + ๐œ€ ๐‘ก ๐‘ˆ๐‘๐‘…๐ธ๐‘†: ๐‘ข ๐‘ก = ๐›ผ 0 + ๐›ผ 1 log ๐ผ ๐‘ก + ๐›ผ 2 log ๐‘Š ๐‘ก + ๐›ผ 3 ๐‘Ÿ ๐‘ก + ๐›ผ 4 ๐‘ข ๐‘กโˆ’1 + ๐›ผ 5 ๐‘ข ๐‘กโˆ’2 + ๐œ€ ๐‘ก

19 Question c) ๐‘€๐‘œ๐‘‘๐‘’๐‘™โ†’ ๐‘‡๐‘’๐‘ ๐‘กโ†’ ๐‘‡๐‘’๐‘ ๐‘กโ€ฆโ†’ ๐ธ๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ ๐‘Ž๐‘ข๐‘ก๐‘œ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ก๐‘’๐‘ ๐‘ก (โ€ฒ๐‘ก๐‘œ ๐‘™๐‘Ž๐‘”โ€ฒ = 2) Test Statistic: ~ ๐œ’ 2 2 ๐œ’ =5.991 ๐œ’ =9.210 โˆด We reject the null hypothesis of no autocorrelation at both 5% and 1%

20 Question d) What are the consequences of your findings for the usefulness of the standard Ordinary Least Squares results for the consumption function above?

21 Question d) Consequences of autocorrelation
OLS estimators are LUE but not BLUE (most efficient and unbiased) The estimated variances of OLS estimators are biased Usual ๐‘ก and ๐น tests are unreliable The usual formula to compute the error variance is a biased estimator of the true ๐œŽ 2 The conventionally computed ๐‘… 2 may be an unreliable measure of the true ๐‘… 2


Download ppt "Tutorial 2: Autocorrelation"

Similar presentations


Ads by Google