Download presentation
Presentation is loading. Please wait.
1
Entropic Gravity Miao Li 中国科学院理论物理研究所
中国科学院理论物理研究所 Institute of Theoretical Physics CAS 兩岸粒子物理與宇宙學研討會 2019年5月2日星期四
2
Based on work done with Rong-Xin Miao and Wei Gu
And work done with Rong-Xin Miao and Jun Meng 1. A New Entropic Force Scenario and Holographic Thermodynamics arXiv: 2. f(R) Gravity and Maxwell Equations from the Holographic Principle arXiv: 2019年5月2日星期四
3
1. Verlinde’s entropic force scenario Fdx=TdS
Newton’s second law 2019年5月2日星期四
4
Newton’s law of gravitation
2019年5月2日星期四
5
Verlinde’s derivation of Einstein Equations
Temperature Holography, namely the bit number 2019年5月2日星期四
6
Equipartition Thus 2019年5月2日星期四
7
From the equipartition
And From Tolman-Komar mass From the equipartition theorem 2019年5月2日星期四
8
2. Our derivation of Einstein Equations
Verlinde uses a closed holographic screen We use an open screen 2019年5月2日星期四
9
Through the screen, there is an energy flow
This is a bulk flow. 2019年5月2日星期四
10
According to holography, this flow can be written
using only the physical quantities on the screen 2019年5月2日星期四
11
Naturally, we assume the surface stress tensor
be given by local geometry Using the Gauss-Codazzi equation 2019年5月2日星期四
12
Compare to the bulk flow, we find
We have Compare to the bulk flow, we find 2019年5月2日星期四
13
We almost obtain the Einstein equations. Note that
We deduce 2019年5月2日星期四
14
3. Comparison with Verlinde and Jacobson Verlinde Our proposal
Closed holographic screen Open or closed screen Temperature T Without or with T Tolman-Komar mass Brown-York Energy Equipartition Surface stress tensor 2019年5月2日星期四
15
The Brown-York semi-local energy has a form
2019年5月2日星期四
16
We see that the second term is an extra compared with Verlinde.
The equipartition theorem does not have to be true since it is very peculiar. We have extra datum p, which is important in studying thermodynamics. 2019年5月2日星期四
17
Open null screen Open or closed time-like
Jacobson Our proposal Open null screen Open or closed time-like T only T, p chemical potential First law First law We have more information. 2019年5月2日星期四
18
4. Holographic thermodynamics Consider a screen adiatically moves in
space-time r r+dr 2019年5月2日星期四
19
E and p are defined (to be substracted), we need To know
The first law E and p are defined (to be substracted), we need To know 2019年5月2日星期四
20
For a static and spherically symmetric metric
we have 2019年5月2日星期四
21
and We deduce 2019年5月2日星期四
22
To derive the chemical potential, we notice that
for a black hole (or a region of vacuum) Nh=1 and dS=0, so 2019年5月2日星期四
23
Assume the above formula be generally true for
other N and h, we can compute the holographic entropy for a gas with weak gravity. where for example 2019年5月2日星期四
24
and for the gas in particular
We find in general and for the gas in particular 2019年5月2日星期四
25
To make the area term absent, x=0 thus
This is the same form of the Bekenstein bound 2019年5月2日星期四
26
Indeed we also have a bound, when
S reaches its maximum, and agrees with the Bekenstein bound if 2019年5月2日星期四
27
5. Derivation of f(R) gravity
I and Pang Yi showed that it is impossible to acco- modate f(R) gravity in the Verlinde proposal. We show that it is rather straightforward to include it in our program. We need to simply use a different surface stress tensor. 2019年5月2日星期四
28
The new surface stress is postulated to be
The first term is similar to the Einstein gravity, proportional to the extrinsic curvature. The scond term is to be determined by consistency. 2019年5月2日星期四
29
Thus, the screen energy change is
2019年5月2日星期四
30
So q can be determined. To determine F, we use
We deduce So q can be determined. To determine F, we use The Bianchi identity and find 2019年5月2日星期四
31
Thus, the f(R) gravity equation of motion:
and the surface stress tensor 2019年5月2日星期四
32
6. The Maxwell equations from holography
Charge flow replaces energy flow in this case. The bulk charge flow: 2019年5月2日星期四
33
The charge change on the open screen:
Equating these two we have 2019年5月2日星期四
34
We postulate and 2019年5月2日星期四
35
Solving these conditions, we find A be asymmetric and
These are Maxwell equation. To show that A is F given in terms of the gauge potential, we consider the magnetic charge flow which is actually zero. So 2019年5月2日星期四
36
We make a different proposal from Verlinde
To conclude: We make a different proposal from Verlinde Our proposal makes derivation of the Einstein equations more complete. 3. Our proposal has a reasonable thermodynamics while Verlinde’s doen’t. 4. We predict a holographic entropy for a gas. 5. More flexible, F(R) and Maxwell theory are derived 2019年5月2日星期四
37
Derive a general formula for the chemical potential.
Future work: Derive a general formula for the chemical potential. 2. Discuss various situations such as anti-de Sitter and cosmology (about holographic entropy). 3. Apply it to study dark energy. We are already working in these directions. 2019年5月2日星期四
38
Thank You ! 2019年5月2日星期四
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.