Download presentation
Presentation is loading. Please wait.
Published byElmer Queen Modified over 10 years ago
1
Aurélien Duret Aurelien.Duret@entpe.fr Measurement of variability involved in the car-following rules Young Researchers Seminar 2009 Torino, Italy, 3 to 5 June 2009
2
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 2 Context Empirical evidence = traffic stream is heterogeneous Developpement of microscopic models Need to know the drivers behavior distribution Need some microscopic data (trajectories)
3
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 3 I80, USA (NGSIM Program) x t Lane Id Vehicle Id Position Time Leader Id Follower Id Class /Length Vehicle width ExitInsertionHeavy vehicleShockwavesFluid area IdentificationTrajectorySurrounding conditionsGeometric characteristics
4
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 4 space Large gapfree-flow (i) (i+1) Car-following model
5
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 5 space Car-following model Small gapCongestion (i) (i+1)
6
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 6 Car-following model time space (i) (i+1)
7
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 7 Car-following model time space (i) (i+1)
8
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 8 NEWELL Car-following model Spacing Speed Spacing 0 (i) (i+1)
9
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 9 A MoE1 d tau MoE1(tau i ) tau i MoE1(tau i ) A First method d
10
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 10 A MoE1 d tau MoE1(tau i ) tau i MoE1(tau i ) tau i First method
11
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 11 A MoE1 d tau MoE1(tau i ) tau i MoE1(tau i ) tau i First method
12
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 12 MoE1 A d tau MoE1(tau i ) tau i MoE1(tau i ) tau i First method
13
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 13 tau A MoE1 d tau MoE1(tau i ) First method
14
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 14 MoE 1 tau tau 1 * A d d1*d1* d 1 * tau 1 * w 1 * First method
15
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 15 tau(w 2 *) w* u u u tau(w 2 *)=constant std(tau)=0 tau 2 *=mean(tau(w 2 *)) Second method
16
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 16 tau(w) w tau(w)=variable std(tau)0 u u u MoE 2 (w)= std(tau(w,u)) tau(w) Second method
17
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 17 MoE w w2*w2* d 2 * tau 2 * w 2 * tau 2 *= mean(tau(w 2 *)) Second method
18
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 18 Two pairs of trajectories 5 stop-&-go shockwaves Travel time : 150s No stop-&-go shockwave Travel time : 65s Couple1 Couple2
19
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 19 MoE1 Couple1 Couple2
20
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 20 MoE2 Couple1 Couple2
21
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 21 MoE1 & MoE2 Couple1Couple2 d1*d1*tau 1 *w1*w1*d2*d2*tau 2 *w2*w2* First method 7.41.64.87.81.27.2 Second method 7.61.45.38.51.26.2 Efficiency?Accuracy?
22
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 22 Efficiency MoE MoE* More efficient! Parameter
23
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 23 Accuracy MoE* 1.05 x MoE* 5%-LoA MoE Parameter
24
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 24 MoE* 1.05 xMoE* 5%-LoA More accurate! Accuracy MoE Parameter
25
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 25 Couple1Couple2 MoE*LoA 1 (Interval width) MoE*LoA 1 (Interval width) First method 1.8m3.4 m/s1.2m 4.4 m/s Second method 11%2.8 m/s7% 3.8 m/s 1 : the LoA has been normalized Comparison
26
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 26 Couple1Couple2 MoE*LoA 1 (Interval width) MoE*LoA 1 (Interval width) First method 1.8m3.4 m/s1.2m 4.4 m/s Second method 11%2.8 m/s7% 3.8 m/s 1 : the LoA has been normalized The second method is more accurate! Comparison
27
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 27 Couple1Couple2 MoE*LoA 1 (Interval width) MoE*LoA 1 (Interval width) First method 1.8m3.4 m/s1.2m 4.4 m/s Second method 11%2.8 m/s7% 3.8 m/s 1 : the LoA has been normalized Both methods are more accurate for couple1 Comparison
28
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 28 Couple1Couple2 MoE*LoA 1 (Interval width) MoE*LoA 1 (Interval width) First method 1.8m3.4 m/s1.2m 4.4 m/s Second method 11%2.8 m/s7% 3.8 m/s 1 : the LoA has been normalized Both methods are more efficient for couple2 Comparison
29
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 29 Identify a simple CF-model consistent with observations Explore two methods for estimating individual parameters Compare of the results in terms of efficiency and accuracy Conclusion
30
IntroductionDataMethodologyResults Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 30 Distribution (method2)
31
Measurement of variability involved in the car-following rules Aurélien Duret ECTRI – FEHRL – FERSI Young Research Seminar 2009, Torino, 3-5 June 2009 31 REFERENCES [Ahn2004]Soyoung Ahn, Michael J. Cassidy and Jorge Laval (2004). Verification of a simplified car-following theory. Transp Res. 38B, pp. 431- 440. [Cassidy1998]Cassidy, M.J. and Windover, J.R. (1998). Driver memory: motorist selection and retention of individualized headways in highway t raffic. Transp Res. 32A, pp. 129–137. [Chiabaut2009a]Chiabaut, N., Leaclercq, L. and Buisson, Ch. (2009). From heterogeneous drivers to macroscopic pattern in congestion. Accepted for publication in Transp. Res B. [Chiabaut2009b]Chiabaut, N., Buisson, Ch. And Leclercq, L. (2009). Fundamental diagram estimation through passing rate measurements in congestion, accepted to publication in IEEE Transactions on Intelligent Transportation Systems. [Duret2008]Duret, A., Buisson, Ch. and Chiabaut, N. (2008). Estimation individual speed-spacing relationship and assessing the Newell's car-following model ability to reproduce trajectories. Transportation Research Record. [Hoogendoorn2005]Hoogendoorn S.P., and Ossen S. (2005). Parameter estimation and analysis of car-following models. Proceedings of the 16th International Symposium on Transportation and Traffic Theory (H.S. Mahmassani, ed.), 2005, pp. 245-265. [Newell1993]Newell, G.F. (1993). A simplified theory of kinematic waves in highway traffic I-General Theory II-Queueing at freeway bottlenecks III- Multi-destination flows. Transp. Res. 27B, pp. 281–313. [Newell2002]Newell, G.F. (2002). A simplified car-following theory: a lower order model. Transport. Res. 36B, pp. 195–205. [NGSIM]http://www.ngsim.fhwa.dot.gov/ [Ossen2008] Ossen, S. and Hoogendoorn, S., 2008. Validity of Trajectory-Based Calibration Approach of Car-Following Models in Presence of Measurement Errors. Transportation Research Board 87 th annual meeting 2008, Paper #08-1242, Washington D.C., USA. [Ossen2009]Ossen, S. and Hoogendoorn, S., 2009. Reliability of Parameter Values Estimated Using Trajectory Observations. Transportation Research Board 88 th annual meeting 2009, Paper #09-1898, Washington D.C., USA. Thank you!!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.