Presentation is loading. Please wait.

Presentation is loading. Please wait.

Psych 231: Research Methods in Psychology

Similar presentations


Presentation on theme: "Psych 231: Research Methods in Psychology"— Presentation transcript:

1 Psych 231: Research Methods in Psychology
Statistics (cont.) Psych 231: Research Methods in Psychology

2 Announcements Due today No labs this week Journal Summary 2 assignment
Descriptive and inferential statistics exercises Class experiment final draft (Adam’s sections) No labs this week Use your time to work on posters of the group projects Poster sessions are last lab sections of the semester (last week of classes), so start thinking about your posters. I will lecture about poster presentations on Monday. Announcements

3 Testing Hypotheses Step 1: State your hypotheses
Step 2: Set your decision criteria Step 3: Collect your data from your sample(s) Step 4: Compute your test statistics Step 5: Make a decision about your null hypothesis “Reject H0” – there is a statistically significant difference “Fail to reject H0” – there is not a statistically significant difference Testing Hypotheses

4 “Generic” statistical test
XB XA ER: Random sampling error ID: Individual differences (if between subjects factor) TR: The effect of a treatment The generic test statistic - is a ratio of sources of variability Observed difference TR + ID + ER ID + ER Computed test statistic = = Difference from chance “Generic” statistical test

5 Difference from chance
Sample s X Population σ μ Distribution of sample means Avg. Sampling error “chance” Difference from chance

6 “Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion TR + ID + ER ID + ER Distribution of the test statistic Test statistic Distribution of sample means α-level determines where these boundaries go “Generic” statistical test

7 “Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 2.5% 2.5% “two-tailed” with α = 0.05 Fail to reject H0 “Generic” statistical test

8 “Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 “One tailed test”: sometimes you know to expect a particular difference (e.g., “improve memory performance”) 5.0% “one-tailed” with α = 0.05 Fail to reject H0 “Generic” statistical test

9 “Generic” statistical test
Things that affect the computed test statistic Size of the treatment effect The bigger the effect, the bigger the computed test statistic Difference expected by chance (sample error) Variability in the population Sample size TR + ID + ER ID + ER “Generic” statistical test

10 Some inferential statistical tests
1 factor with two groups T-tests Between groups: 2-independent samples Within groups: Repeated measures samples (matched, related) 1 factor with more than two groups Analysis of Variance (ANOVA) (either between groups or repeated measures) Multi-factorial Factorial ANOVA Some inferential statistical tests

11 T-test Design Formula: Observed difference X1 - X2 T =
2 separate experimental conditions Degrees of freedom Based on the size of the sample and the kind of t-test Formula: Observed difference T = X X2 Diff by chance Based on sample error Computation differs for between and within t-tests T-test

12 T-test Reporting your results
The observed difference between conditions Kind of t-test Computed T-statistic Degrees of freedom for the test The “p-value” of the test “The mean of the treatment group was 12 points higher than the control group. An independent samples t-test yielded a significant difference, t(24) = 5.67, p < 0.05.” “The mean score of the post-test was 12 points higher than the pre-test. A repeated measures t-test demonstrated that this difference was significant significant, t(12) = 5.67, p < 0.05.” T-test

13 Analysis of Variance XB XA XC Designs Test statistic is an F-ratio
More than two groups 1 Factor ANOVA, Factorial ANOVA Both Within and Between Groups Factors Test statistic is an F-ratio Degrees of freedom Several to keep track of The number of them depends on the design Analysis of Variance

14 Analysis of Variance More than two groups F-ratio = XB XA XC
Now we can’t just compute a simple difference score since there are more than one difference So we use variance instead of simply the difference Variance is essentially an average difference Observed variance Variance from chance F-ratio = Analysis of Variance

15 1 factor ANOVA 1 Factor, with more than two levels XB XA XC
Now we can’t just compute a simple difference score since there are more than one difference A - B, B - C, & A - C 1 factor ANOVA

16 1 factor ANOVA The ANOVA tests this one!! XA = XB = XC XA ≠ XB ≠ XC
Null hypothesis: H0: all the groups are equal The ANOVA tests this one!! XA = XB = XC Do further tests to pick between these Alternative hypotheses HA: not all the groups are equal XA ≠ XB ≠ XC XA ≠ XB = XC XA = XB ≠ XC XA = XC ≠ XB 1 factor ANOVA

17 1 factor ANOVA Planned contrasts and post-hoc tests:
- Further tests used to rule out the different Alternative hypotheses XA ≠ XB ≠ XC Test 1: A ≠ B XA = XB ≠ XC Test 2: A ≠ C XA ≠ XB = XC Test 3: B = C XA = XC ≠ XB 1 factor ANOVA

18 1 factor ANOVA Reporting your results The observed differences
Kind of test Computed F-ratio Degrees of freedom for the test The “p-value” of the test Any post-hoc or planned comparison results “The mean score of Group A was 12, Group B was 25, and Group C was 27. A 1-way ANOVA was conducted and the results yielded a significant difference, F(2,25) = 5.67, p < Post hoc tests revealed that the differences between groups A and B and A and C were statistically reliable (respectively t(1) = 5.67, p < 0.05 & t(1) = 6.02, p <0.05). Groups B and C did not differ significantly from one another” 1 factor ANOVA

19 We covered much of this in our experimental design lecture
More than one factor Factors may be within or between Overall design may be entirely within, entirely between, or mixed Many F-ratios may be computed An F-ratio is computed to test the main effect of each factor An F-ratio is computed to test each of the potential interactions between the factors Factorial ANOVAs

20 Factorial ANOVAs Reporting your results The observed differences
Because there may be a lot of these, may present them in a table instead of directly in the text Kind of design e.g. “2 x 2 completely between factorial design” Computed F-ratios May see separate paragraphs for each factor, and for interactions Degrees of freedom for the test Each F-ratio will have its own set of df’s The “p-value” of the test May want to just say “all tests were tested with an alpha level of 0.05” Any post-hoc or planned comparison results Typically only the theoretically interesting comparisons are presented Factorial ANOVAs


Download ppt "Psych 231: Research Methods in Psychology"

Similar presentations


Ads by Google