Download presentation
Presentation is loading. Please wait.
Published byPrimrose Crawford Modified over 5 years ago
1
Challenges, Progress and Plans of SRF CH-Structures
Holger J. Podlech Institute for Applied Physics (IAP) University of Frankfurt TTC Meeting Jefferson Lab November 5th-8th 2012
2
CH-Structures Crossbar H-Mode-Structure H211-Mode
Efficient DTL-structures for the low and medium energy range KONUS or EQUUS Layout
3
First CH-Prototype f=360 MHz b=0.1 Ueff=5.5 MV
5
Pick-up Forwarded Piezo signal Horizontal Test
6
Learning Lessons From the First Prototype
Little space between stems for tuner and power coupler change orientation New dynamic tuner without additional longitudinal space requirements Poor preparation possibilities (only on-axis) new cleaning flanges Long end cells for field enhancement (additional drift) sloped end stems
7
325 MHz CH-Cavity Static Tuners Bellow Tuner Power Coupler
0.1545 Frequency (MHz) Cells 7 Length bl-def (mm) 505 Diameter (mm) 348 Ea (MV/m) 5 Ep/Ea 5.1 Bp/Ea [mT/(MV/m)] 13 G (W) 64 Ra/Q0 (W) 1248 RaRs (W2) 80000 Power Coupler Helium Vessel
8
325 MHz CH-Prototype
9
Optimization of the Geometry of Superconducting CH-Cavities
Cost, Construction Time, Fabrication Inaccuracies Arrived in Frankfurt October 31st
10
325 MHz CH-Cavity: First Measurements
11
325 MHz Cavity: Static Tuners
Design Position Deviation from Design frequency: 500 kHz < 0.2%
12
Strategy to Hit the Operation Frequency
Fabrication inaccuracy (Δf = 0.5 MHz) Thermal shrinkage (Δf ≈ +400 kHz) Pressure sensitivity (Δf ≈ +200 kHz) Surface preparation (Δf = 6 kHz/mm) Microphonics (Δf = ? Hz) Lorentz Force Detuning (Δf = ? Hz) End cell offset 10 mm (Δf ≈ ±1 MHz) Static tuners (Δf ≈ +1.3 MHz, -2.2 MHz) Surface preparation (Δf = 6 kHz/mm) Slow bellow tuners (Δf ≈ ±250 kHz) Fast bellow tuner (Δf ≈ ± 1000 Hz)
13
The MYRRHA Project Multi Purpose HYbrid Research Reactor for High Tech Applications
Struckturen durchgehen Warum normalleitend / supraleitend CH-Design Solenoid-Design Ein Kryomodul
14
The 17 MeV MYRRHA Injector
sc CH-4 sc CH-3 sc CH-2 sc CH-1 Parameter Unit Value Frequency MHz 176.1 Cells --- 7-10 L tot mm Ueff MV Ea MV/m R/Q W Struckturen durchgehen Warum normalleitend / supraleitend CH-Design Solenoid-Design Ein Kryomodul
15
Future GSI/FAIR Injector Complex
Parameter Unit Mass/ Charge 6 Frequency MHz Max. beam current mA 1 Injection energy AMeV 1.4 Output energy 3.5 – 7.5 Output energy spread AkeV ± 3 Length of acceleration m 12.7 Sc CH-cavities 9 Sc solenoids 7
16
cw SHE-Linac Demonstrator
Parameter Unit CH-1 Beta 0.059 Frequency MHz Gap number 15 Total length mm 687 Cavity diameter 409 Cell length 40.82 Aperture 20 Ua MV 3.369 Energy gain MeV 2.97 Accelerating gradient MV/ m 5.1 Ep/ Ea 6.4 Bp/ Ea mT/ (MV/m) 5.4 R/ Q Ω 3320 Static tuner 9 Dynamic bellow tuner 3 Helium vessel Coupler flange Pickup flange Inclined end stem Tuner flange Preparation flange
17
Cryo Module cw SHE-Linac Demonstrator
18
Setup for Beam Tests at GSI
217 MHz Demonstrator 108.4 MHz RFQ 108.4 MHz IH-Cavity
19
Thank you
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.