Download presentation
Presentation is loading. Please wait.
1
Performance Optimization
2
Basic Optimization Algorithm
pk - Search Direction ak - Learning Rate
3
Steepest Descent Choose the next step so that the function decreases:
For small changes in x we can approximate F(x): where If we want the function to decrease: We can maximize the decrease by choosing:
4
Example
5
Plot
6
Stable Learning Rates (Quadratic)
Stability is determined by the eigenvalues of this matrix. Eigenvalues of [I - aA]. (li - eigenvalue of A) Stability Requirement:
7
Example
8
Minimizing Along a Line
Choose ak to minimize where
9
Example
10
Successive steps are orthogonal.
Plot Successive steps are orthogonal. F x ( ) Ñ T k 1 + = p g
11
Newton’s Method Take the gradient of this second-order approximation
and set it equal to zero to find the stationary point:
12
Example
13
Plot
14
Non-Quadratic Example
Stationary Points: F(x) F2(x)
15
Different Initial Conditions
F(x) F2(x)
16
(The eigenvectors of symmetric matrices are orthogonal.)
Conjugate Vectors A set of vectors is mutually conjugate with respect to a positive definite Hessian matrix A if One set of conjugate vectors consists of the eigenvectors of A. (The eigenvectors of symmetric matrices are orthogonal.)
17
For Quadratic Functions
The change in the gradient at iteration k is where The conjugacy conditions can be rewritten This does not require knowledge of the Hessian matrix.
18
Forming Conjugate Directions
Choose the initial search direction as the negative of the gradient. Choose subsequent search directions to be conjugate. where or or
19
Conjugate Gradient algorithm
The first search direction is the negative of the gradient. Select the learning rate to minimize along the line. Select the next search direction using If the algorithm has not converged, return to second step. A quadratic function will be minimized in n steps. (For quadratic functions.)
20
Example
21
Example
22
Plots Conjugate Gradient Steepest Descent
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.