Download presentation
Presentation is loading. Please wait.
1
Parton energy loss in cold nuclei and
Hard Probes 2012 Cagliari, May 27 – June 1, 2012 Parton energy loss in cold nuclei and implications on jet quenching in AA collisions Hongxi Xing & Xin-Nian Wang CCNU & LBNL
2
Multiple Interaction in QCD
Multiple Interaction in QCD: A way of life Everywhere, all the time, indispensable Hard probes employ multiple scattering as a tool
3
Deeply Inelastic Scattering
k=xp p Quark distribution in collinear factorized pQCD parton model: quarks carrying momentum fraction x of the nucleon (nucleus)
4
Leading-twist parton distribution in DIS
Belitsky, Ji and Yuan (2002) k p .... f_A^q(x,\vec k_\perp)=\int\frac{d y^-}{4\pi}\frac{d^2y_\perp}{(2\pi)^2} e^{ixp^+y^- -i \vec k_\perp\cdot \vec y_\perp} \langle A |\bar \psi(0) \gamma^+ {\cal L}(0,y)\psi(y) | A\rangle {\cal L}(0,y)={\cal L}^\dagger_\parallel(\infty,0;\vec 0_\perp) {\cal L}_\perp^\dagger(\infty;\vec y_\perp,\vec 0_\perp) {\cal L}_\parallel(\infty,y^-;\vec y_\perp) {\cal L}_\parallel(-\infty,y^-,\vec y_\perp)={\cal P} \exp\left[-ig\int_{y^-}^{-\infty} d\xi^- A_+(\xi^-,\vec y_\perp) \right] {\cal L}_\perp(-\infty;\vec y_\perp,\vec 0)={\cal P} \exp\left[-ig\int_{y^-}^{-\infty} d\vec\xi_\perp\cdot \vec A_\perp (\xi^-,\vec y_\perp)\right] {\cal L}_\perp(-\infty;\vec y_\perp,\vec 0)={\cal P} \exp\left[-ig\int_{\vec 0_\perp}^{\vec y_\perp} d\vec\xi_\perp\cdot \vec A_\perp (-\infty,\vec \xi_\perp)\right]
5
Higher Twist Contributions in Multiple Scattering
k p .... H(x_i, \vec k_{Ti}) =H(x_i,\vec k_{Ti}=0)+\vec k_{Ti}\cdot \vec\partial_{k_T}H(x_i,\vec k_{Ti}=0)+\cdots Jet Transport Liang, XNW & Zhou (2008)
6
Parton energy loss in cold nuclear matter
DIS of large nuclei DY production in pA
7
Leading Twist Drell-Yan
Factorization: Separation of short- from long-distance NLO partonic diagram to PDF, LO + NLO collinear part Scaling violation – DGLAP evolution
8
Annihilation-like processes (q+gq)
Double scattering: … Single-triple interference: …
9
Compton-like processes (g+gq)
Double scattering: … Single-triple interference: …
10
LPM interference in DY Final result for particular example Hard-Hard
Soft-Hard 10
11
Medium modified projectile PDF
Modified quark distribution - Vacuum + Medium Modified splitting function Modified DGLAP evolution
12
“factorized” gluon-quark correlation function
Jet transport parameter 12
13
Modified fragmentation function in DIS
Guo, XNW 2000
14
DIS of large nuclei Deng & XNW (2010)
15
Nuclear effects in Drell-Yan
Energy loss VS. Shadowing (FNAL-E866 ELab = 800 GeV) 15
16
Parton energy loss in Drell-Yan
Energy loss VS. Shadowing (FNAL-E906 ELab = 120 GeV) FNAL-E906 provide unambiguous measurement of initial state energy loss 16
17
Jet quenching in hadronic phase of QGP
Chen, Greiner, Wang, XNW, Xu (2010) 30% quenching from hadronic phase
18
Multiple scattering in eA and Drell-Yan in pA important
Summary Multiple scattering in eA and Drell-Yan in pA important eA modified fragmentation function DY in pA modified beam PDF qhat in cold nuclear matter 0.02 GeV^2/fm Parton energy loss during hadronic phase in AA collisions is non-negligible W. Deng, CNM effect in pA at LHC, Thursday Parallel VC (T1C)
21
Modified DGLAP Equations
\frac{\partial \tilde{D}_q^h(z_h,\mu^2)}{\partial \ln \mu^2}&=&\frac{\alpha_s(\mu^2)}{2\pi}\int_{z_h}^1 \frac{dz}{z}\left [\tilde{\gamma}_{q\rightarrow qg}(z,\mu^2)\tilde{D}_q^h(\frac{z_h}{z},\mu^2)\right. \left. +\tilde{\gamma}_{q\rightarrow gq}(z,\mu^2)\tilde{D}_g^h(\frac{z_h}{z},\mu^2)\right ] \frac{\partial \tilde{D}_g^h(z_h,\mu^2)}{\partial\ln \mu^2}&=&\frac{\alpha_s(\mu^2)}{2\pi}\int_{z_h}^1 \frac{dz}{z}\left [ \sum_{q=1}^{2n_f}\tilde{\gamma}_{g\rightarrow q\bar q}(z,\mu^2)\tilde{D}_q^h(\frac{z_h}{z},\mu^2) \right. +\left. \tilde{\gamma}_{g\rightarrow gg}(z,\mu^2)\tilde{D}_g^h(\frac{z_h}{z},\mu^2)\right ] \tilde \gamma _{a\rightarrow bc}(z,l_{T}^{2})=\gamma_{a\rightarrow bc}(z) + \Delta \gamma_{a\rightarrow bc}(z,l_{T}^{2}) Modified splitting functions
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.