Download presentation
Presentation is loading. Please wait.
1
Richard B. Rood (Room 2525, SRB)
AOSS 401 Geophysical Fluid Dynamics: Atmospheric Dynamics Prepared: Quasi-geostrophic / Analysis / Weather Richard B. Rood (Room 2525, SRB) Cell:
2
Class News Ctools site (AOSS 401 001 F13)
Second Examination on December 10, 2013 Homework Homework due November 26, 2013
3
Weather National Weather Service Weather Underground
Model forecasts: Weather Underground NCAR Research Applications Program
4
So when you are through You will know how to do scale analysis
You will know how to derive the vorticity equation You will know the wave equation and how to seek “wave-like” solution Something more about weather and climate
5
Some fundamental notions you will learn.
The importance of the conservation equation Atmospheric motions organize in distinct spatial and temporal scales Most of the dynamic disturbances of the atmosphere can be classified as either: Waves Vortices There is a mean circulation of the atmosphere which is known as the general circulation. What does this do? The atmosphere has two dominate balances, at least away from the tropics: Hydrostatic balance Geostrophic balance It is the deviations from this balance which we are most interested in.
6
Links for today http://www.wunderground.com/maps/
7
Outline Analysis of equations of atmospheric motion scaled for large-scale middle latitude dynamics / Quasi-geostrophic formalism Review of large-scale formalism Long and short waves / Barotropic waves Examine ageostrophic wind Cyclone development Occlusion Baroclinic Barotropic /// energy conversion Vertical motion
8
Vorticity Equation DIVERGENCE TILTING SOLENOIDAL or BAROCLINIC
Changes in relative vorticity are caused by: Divergence Tilting Gradients in density on a pressure surface Advection
9
QG Theory: Assumptions
Assume the horizontal wind is approximately geostrophic Scale the material derivative Neglect the vertical advection Horizontal advection due to geostrophic wind Assume the north-south variation of the coriolis parameter is constant Divergence in the continuity equation only due to ageostrophic wind Modify the thermodynamic equation Advection by the geostrophic wind Assume hydrostatic balance Vertical velocity acts on a mean static stability profile
10
The quasi-geostrophic (QG) equations
momentum equation geostrophic wind continuity equation thermodynamic equation
11
Geopotential tendency equation
Vorticity Advection Thickness Advection Linear partial differential equation for geopotential tendency. Given a geopotential distribution at an initial time, can compute geopotential distribution at a later time. The right hand side is like a forcing.
12
First major set of conclusions from the quasi-geostrophic system
We see that Geostrophic advection of geostrophic vorticity causes waves to propagate The vertical difference in temperature (thickness) advection causes waves to amplify
13
Remember our scaled vorticity equation?
We see that the QG vorticity equation is very similar to the scaled vorticity equation we developed before …with a few additional assumptions
14
Long and Short Waves In this discussion these are both “large-scale” meaning that rotation is important. Therefore, this is a “short” large-scale wave versus a “long” large-scale wave.
15
Barotropic Wave Dispersion
Look at the barotropic wave equation
16
Consider a barotropic fluid
Think here How do we get to this form of the equation with geopotential? Barotropic: ageostrophic wind is zero, vertical velocity is zero, horizontal divergence is zero
17
Assume a “wave like solution” (get used to this…)
Dispersion relation. Relates frequency and wave number to flow. Must be true for waves.
18
Wind must be positive, from the west, for a wave.
Stationary wave? U positive for wave to exist. Return to lecture where we considered eastward and westward flow over the mountain. What is the wavelength for a stationary wave? This leads to “planetary waves.” Scale order of 10,000 km. 1 – 2 – 3 of these around the planet, longitudinally. Wind must be positive, from the west, for a wave.
19
Consider a more specific form of a wave solution
20
Assume that the geopotential takes the form of a wave
Mean Wave Mean Ф Gradient in y Horizontal wavenumber
21
Remember the relationship between geostrophic wind and geopotential
Plug in the wave solution for the geopotential height
22
Divide the geostrophic wind into mean and perturbation
Divide wind into mean and perturbation, assume no mean north/south wind Perturbation only mean perturbation
23
Plug into the advection of relative vorticity
24
Plug into the advection of planetary vorticity
25
Compare advection of planetary and relative vorticity
26
Advection of vorticity
ζ < 0; anticyclonic Advection of ζ tries to propagate the wave this way ٠ ΔΦ > 0 B Φ0 - ΔΦ L L Φ0 H Advection of f tries to propagate the wave this way ٠ ٠ y, north Φ0 + ΔΦ A C x, east ζ > 0; cyclonic ζ > 0; cyclonic
27
Advection of vorticity
ζ < 0; anticyclonic Short waves ٠ ΔΦ > 0 B Φ0 - ΔΦ L L Φ0 H Long waves ٠ ٠ y, north Φ0 + ΔΦ A C x, east ζ > 0; cyclonic ζ > 0; cyclonic
28
More about the ageostrophic wind
Review ageostrophic wind and implications for vertical motion and cyclone development Use all that we know to describe development of a mid-latitude cyclone
29
A closer look at the ageostrophic wind
Start with our momentum equation Just for kicks, take and see what happens
30
A closer look at the ageostrophic wind
Now, by the right hand rule: and remember so we can write
31
A closer look at the ageostrophic wind
We end up with …the ageostrophic wind! Knowing that the divergence of the ageostrophic wind leads to vertical motion, let’s explore the implications of this…
32
Where do we find acceleration?
Curvature Acceleration Ageostrophic wind ΔΦ > 0 Φ0 - ΔΦ D C Φ0 y, north Φ0 + ΔΦ x, east D = Divergence and C = Convergence
33
Where do we find acceleration?
Along-flow speed change
34
Where do we find acceleration?
Along-flow speed change Acceleration Ageostrophic wind D C J Remember our example of a thermal circulation, where divergence and convergence at different levels are related. D = Divergence and C = Convergence
35
Where do we find acceleration?
Along-flow speed change
36
Vorticity at upper and lower levels
Continue to examine the divergence of the wind Which is a proxy for the vertical velocity
37
One more application… Start with the identity
Now, consider the divergence of the ageostrophic wind Use the identity, and we have
38
What is this? Formally, this is
Which is how we derived the vorticity equation
39
What can we do with this? Plug in our QG assumptions
Let’s think about the difference in divergence (of the ageostrophic wind) between two levels By the continuity equation, this means that mass is either increasing in the column (net convergence) or decreasing in the column (net divergence) This should tell us whether low pressure or high pressure is developing at the surface…
40
Column Net Convergence/Divergence
Subtract vorticity equation at 1000 hPa from vorticity equation at 500 hPa Gives us the net divergence between 1000 and 500 hPa It can be shown that
41
Examine each term “Steering term”
Low-level centers of vorticity propagate in the direction of the thermal wind (Along the gradient of thickness)
42
Examine each term “Development term” A bit complicated
Remember, thermal wind is the vertical change in the geostrophic wind This term indicates the influence of a tilt with height of the location of the maximum (minimum) in vorticity Fundamentally: if the location of the maximum in vorticity shifts westward with height, the low will develop.
43
Development term Combine terms Definition of thermal wind
Definition of geostrophic vorticity
44
Development term Remember the barotropic height tendency equation?
How about the omega equation?
45
Development term Development term is the vertical change in barotropic advection of vorticity This is the same as the stretching term in the omega equation If the upper-level wave propagates faster than the surface wave, the system decays Otherwise, the system may develop…
46
Implications Surface low and high pressure systems (centers of maximum/minimum vorticity) propagate along lines of constant thickness If there is a vertical tilt westward with height of the vorticity, then a surface low pressure system can intensify (increase in low-level positive vorticity)
47
Look at Cyclones
48
Mid-latitude cyclone development
49
Mid-latitude cyclone development
From:
50
Mid-latitude cyclone development
From:
51
Mid-latitude cyclone development
From:
52
Mid-latitude cyclone development
From:
53
Mid-latitude cyclone development
From:
54
In the classic cyclone model
Occlusion describes the transition of a cyclone from baroclinic (west-ward tilt with height) to barotropic (“vertically stacked”) Once there is no more westward vertical tilt with height, no further development can occur
55
Baroclinic Barotropic
56
Idealized Development of a Baroclinic Wave
Start with a N-S temperature gradient and associated wind speed maximum in the upper troposphere Introduce a low-level perturbation Watch the conversion of PE to KE and the development of the wave…
57
Energetics of Midlatitude Cyclone Development
The jet stream is commonly associated with strong temperature gradients in the middle/lower troposphere (thermal wind relationship) Mid-latitude cyclones develop along waves in the jet stream By thermal wind balance, this means that mid-latitude cyclones develop along strong horizontal temperature gradients (fronts) There is a link between the strength of the horizontal temperature gradient and cyclone development…
58
Idealized vertical cross section
59
Two important definitions
barotropic density depends only on pressure. By the ideal gas equation, surfaces of constant pressure are surfaces of constant density are surfaces of constant temperature (idealized assumption). = (p) baroclinic density depends on pressure and temperature (as in the real world). = (p,T)
60
Barotropic/baroclinic atmosphere
p + p T+T p + 2p T+2T T T+T T+2T Baroclinic: p p + p p + 2p ENERGY HERE THAT IS CONVERTED TO MOTION
61
Barotropic/baroclinic atmosphere
p + p T+T p + 2p T+2T T T+T T+2T Baroclinic: p p + p p + 2p DIABATIC HEATING KEEPS BUILDING THIS UP
62
Barotropic/baroclinic atmosphere
Energetics: Baroclinic = temperature contrast = density contrast = available potential energy Extratropical cyclones intensify through conversion of available potential energy to kinetic energy
63
Available Potential Energy
Defined as the difference in potential energy after an adiabatic redistribution of mass COLD WARM
64
Available Potential Energy
Defined as the difference in potential energy after an adiabatic redistribution of mass WARM COLD
65
Energetics in the atmosphere
Diabatic heating (primarily radiation) maintains the equator to pole temperature contrast Strength of temperature contrast referred to as “baroclinicity” Cyclones at mid-latitudes reduce this temperature contrast—adjust baroclinic atmosphere toward barotropic
66
Energetics in the atmosphere
Ability to convert potential energy to kinetic energy directly related to tilt with height (offset) of low/high pressure
67
Energetics in the atmosphere
Diabatic heating (primarily radiation) maintains the equator to pole temperature contrast Strength of temperature contrast referred to as “baroclinicity” Cyclones at mid-latitudes reduce this temperature contrast—adjust baroclinic atmosphere toward barotropic We can quantify this, but first let’s go back to the ageostrophic wind…
68
Baroclinic Barotropic Transition
69
1200 UTC 31 March 1997
70
1800 UTC 31 March 1997
71
0000 UTC 1 April 1997
72
0600 UTC 1 April 1997
73
1200 UTC 1 April 1997
74
Vertical velocity: Omega equation
Kinematic method Horizontal advection Diabatic method Omega equation What are the ways that we think about vertical motion? Diabatic, Horizontal Advection, Kinematic Method.
75
Characteristics of large-scale vertical velocity
In all of the estimates for vertical velocity what is missing? The answer is _______________ The vertical velocity in this large-scale, mid-latitude description of dynamics is exactly what is needed to maintain what balances ____________ ?
76
QG-omega equation Combine all QG equations
Link between vertical derivative of vorticity advection (divergence/stretching) and vertical motion
77
QG-omega equation Combine all QG equations
Link between vertical derivative of vorticity advection (divergence/stretching) and vertical motion Link between temperature advection and vertical motion
78
QG-omega equation Combine all QG equations
Link between vertical derivative of vorticity advection (divergence/stretching) and vertical motion Link between temperature advection and vertical motion Link between diabatic heating and vertical motion
79
QG-omega equation (simplified)
Advection of absolute vorticity by the thermal wind
80
“Advection” by thermal wind?
How to analyze this on a map? Thermal Wind is Perpendicular to Gradient of Thickness Look at contours of constant thickness
81
Vertical Motion on Weather Maps
Laplacian of omega is proportional to -ω Omega can be analyzed as: Remember, from definition of omega and scale analysis Positive vorticity advection by the thermal wind indicates rising motion
82
Vertical Motion on Weather Maps
Positive vorticity advection by the thermal wind indicates rising motion Descent Ascent + Lines of constant thickness
83
Omega Equation
84
1200 UTC 31 March 1997
85
1800 UTC 31 March 1997
86
0000 UTC 1 April 1997
87
0600 UTC 1 April 1997
88
1200 UTC 1 April 1997
89
Take Away Messages Large-scale dynamics / quasi-geostrophic theory
Hydrostatic balance Geostrophic balance Vertical motion is important, but above balances are always maintained Vertical motion is diagnosed / no time dependence (though it changes with time) Vertical motion is linked to divergence of horizontal wind ageostrophic wind Vertical motion works against static stability, which is large. This is how baroclinicity is represented in the equations, despite baroclinic terms being scaled out We have looked at dynamics of large-scale waves in different ways - heuristically, theoretically and on maps. We see consistency and different insights. The mathematics proves a way to both quantify and explore the behavior of the dynamics.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.