Download presentation
Presentation is loading. Please wait.
1
Chapter 5 Sections 2.3 – 2.4 – 2.5
2
Y = SIN X X is your Angle (θ) Y is your Height
3
Table
4
y = Sin(x) < x < 2π
5
y = sin x,
6
Definition
7
Y = Sin x Sin(-x) = - Sin(x)
ODD FUNCTION: Symmetric About Origin Like f(x) = x3 Sin(-x) = - Sin(x) Example: Sin(- 𝜋 2 )=−1=−𝑆𝑖𝑛( 𝜋 2 )
8
Y = Sin x Sin(-2) = Sin(0) = Sin(2) = Sin(2n), for any Integer n
Period = 2𝜋 Sin(-2) = Sin(0) = Sin(2) = Sin(2n), for any Integer n Sin(θ) = Sin(θ + 2n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (2𝜋) Amplitute: Max Absolute Value of Height = 1
10
Graph of y= csc x = 1 𝑆𝑖𝑛 𝑥 Domain: ALL REALS, Except Integer Multiples of Range: (-∞, -1] U [1, ∞) NO AMPLITUTE Period = 2
11
Y = COS X X is your Angle (θ) Y is your Height
12
Table
13
y = cos x, < x < 2π
14
Figure: y = cos x,
15
Y = Cos x Cos(-x) = Cos(x)
EVEN FUNCTION: Symmetric About Y-Axis Like f(x) = x2 Cos(-x) = Cos(x) Example: Cos(- 𝜋 2 )=0=Cos( 𝜋 2 )
16
Y = Cos x Cos(-2) = Cos(0) = Cos(2) = Cos(2n), for any Integer n
Period = 2𝜋 Cos(-2) = Cos(0) = Cos(2) = Cos(2n), for any Integer n Cos(θ) = Cos(θ + 2n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (2𝝅) Amplitute: Max Absolute Value of Height = 1
18
Graph of y= sec x = 1 𝐶𝑜𝑠 𝑥 Domain: ALL REALS, Except Odd Integer Multiples of 𝜋 2 Range: (-∞, -1] U [1, ∞) NO AMPLITUTE Period = 2
19
Y = Tan X = 𝑆𝑖𝑛 𝑋 𝐶𝑜𝑠 𝑋 X is your Angle (θ) Y is your Height
20
Graph of
21
Table
22
Figure: y = tan x
23
Y = Tan x Tan(-x) = - Tan(x)
ODD FUNCTION: Symmetric About Origin Like f(x) = x3 Tan(-x) = - Tan(x) Example: Tan(- 𝜋 4 )=−1=−Tan( 𝜋 4 )
24
Y = Tan x Tan(-) = Tan(0) = Tan() = Tan(n), for any Integer n
Period = 𝜋 Tan(-) = Tan(0) = Tan() = Tan(n), for any Integer n Tan(θ) = Tan(θ + n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (𝜋) Amplitute: NONE Domain: All Real Numbers, Except Odd Multiples of 𝜋 2 Range: (-∞, ∞)
26
Table: y = cot x
27
Figure: Graph of y = cot x
28
Y = Cot x = 1 𝑇𝑎𝑛 𝑋 Cot(-x) = - Cot(x)
ODD FUNCTION: Symmetric About Origin Like f(x) = x3 Cot(-x) = - Cot(x) Example: Cot(- 𝜋 4 )=−1=−Cot( 𝜋 4 )
29
Y = Cot x Period = 𝜋 Cot(-3/2) = Cot(-/2) = Tan(/2) = Tan(n/2), for any Integer n Cot(θ) = Cot(θ + n) , for any Integer n FUNDAMENTAL PERIOD: First Complete Cycle (𝜋) Amplitute: NONE Domain: All Real Numbers, Except Odd Multiples of Range: (-∞, ∞)
30
Table
31
Theorem
32
Graph Functions of the Form y=A sin(wx) Using Transformations
33
Solution
34
Figure: y = - sin(2x)
35
Graph Functions of the Form y=A cos(wx) Using Transformations
36
Example
37
Solution
38
Figure
40
Example
41
Solution
42
Find an Equation for a Sinusoidal Graph
43
Figure
44
Example Figure 94
45
Solution
46
Graph Functions of the Form y=A tan(wx)+B and y=A cot(wx)+B
47
Example
48
Solution Figure 97
49
Example
50
Solution
51
Solution continued
52
Graph Functions of the Form y=A csc(wx)+B and y=A sec(wx)+B
53
Example
54
Solution Figure 102
55
Example
56
Solution
57
Figure
58
Determine the Signs of the Trigonometric Functions in a Quadrant
59
Figure
60
Table
61
Figure
62
Example
63
Solution
64
Use Even-Odd Properties to Find the Exact Values of the Trigonometric Functions
66
Figure
67
Example
68
Solution
69
Find the Values of the Trigonometric Functions Using Fundamental Identities
73
Example
74
Solution
75
Example
76
Solution
77
Find the Exact Values of the Trigonometric Functions of an Angle Given One of the Functions and the Quadrant of the Angle
78
Example
79
Solution Option 1 Using a Circle
80
Solution Option 1 Using a Circle continued
81
Solution Option 2 Using Identities
82
Solution Option 2 Using Identities continued
84
Example
85
Solution Option 1 Using a Circle
86
Figure
87
Solution Option 2 Using Identities
88
Solution Option 2 Using Identities continued
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.