Download presentation
Presentation is loading. Please wait.
Published byRhoda Lamb Modified over 5 years ago
1
Linear Differential Equations with Constant Coefficients:
f(t): Input u(t): Output (response) Example: Homogeneous solution f(t)= u(t)=est With Matlab: Characteristic Equation: s3est + 4s2est + 14sest + 20est= 0 a=[1,4,14,20];roots(a) s3 + 4s2 + 14s + 20 = 0 Eigenvalues: -13i, - 2 uh(t) = C1e(-1+3i)t + C2 e(-1-3i)t + A2e-2t uh(t) = A1e-tcos(3t-φ)+A2e-2t
2
uh(t) = A1e-tcos(3t-φ)+A2e-2t
Initial conditions: at t=0 -1.2 = A1 cosφ + A2 2.5 = -A1 cosφ +3A1 sinφ -2A2 -3.1= -8A1 cosφ - 6A1 sinφ + 4A2 A1, A2 and φ can be found by Newton-Raphson method.
3
Laplace Transform:
4
Laplace Transform of the Derivatives :
5
(shift in time or delay):
6
Laplace transform of the solution due to the initial conditions:
Initial conditions: at t=0
7
Partial fraction expansion:
With Matlab; num=[-1.2,-2.3,-9.9]; den=[1,4,14,20]; [r,p,k]=residue(num,den) r(1)= i, r(2)= i, r(3)=-1.01
8
Homogeneous solution :
uh(t) = A1e-tcos(3t-φ)+A2e-2t With Matlab; z= i A1=2*abs(z) fi=angle(z)
9
At t=0 are given. Find θ(t).
EXAMPLES: The equation of the motion for the unforced motion of a simple pendulum is given as: m g θ Joint friction, B L m=2 kg B=4 Nms/rad L=2 m At t= are given. Find θ(t). Applying the Laplace transform,
10
[r,p,k]=residue(num,den)
EXAMPLES: Laplace transform of the homogenous solution (due to the initial conditions) Eigenvalues The system is stable because the real parts of all the roots are negative. clc;clear num=[4 10]; den=[ ]; [r,p,k]=residue(num,den) r(2) A=2*abs(r(2)) Fi=angle(r(2)) Re 0.25 0.2556 Img
11
EXAMPLES: clc;clear dt=0.1418; ts=25.149; t=0:dt:ts; tetat=0.7151*exp(-0.25*t).*cos(2.2006*t ); plot(t,tetat)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.