Download presentation
Presentation is loading. Please wait.
Published bySucianty Atmadja Modified over 5 years ago
2
(y - µ) t = σ/sqrt(n) ^ ∑(yi - µ)2 σ2 = ^ Variance: n - 1 ∑ yi2 σ2 = ^
mean corrected: Degrees of freedom: n - 1
3
y = βx + ε β * + E ~ N(0, σ2) y1 x1 ε 1 y2 x2 ε 2 . = . . . . .
= yn Xn ε n β * E ~ N(0, σ2)
4
∑ yi2 σ2 = ~ y12 + y22 + … + yn2 ^ n - 1 E ~ N(0, σ2) E ~ N(0, Cε)
covariance Variance-covariance matrix Cε = yTy : y1 y2 … yn x y y1y1 y1y2 … y1yn y12 y y2y1 y2y2 … y2yn y22 = = yn yny1 yn y2 … ynyn yn2 yT y Cε ∑ yi2 σ2 = ~ y12 + y22 + … + yn2 n - 1 ^ n variance
5
e2 e2 e1 e1 Cε = Cε = Properties of covariance matrix
y12 = y22 = … = yn 1 * k Homogeneous or identical error variance or sphericity e1 e2 e1 e2 Cε = Cε = Non-identical
6
e2 e1 Cε = Properties of covariance matrix
y1y2 = y1y3 = 0 ynym = Independent error components Non-independent e1 e2 Ex: Temporal autocorrelation 0.5 5 Cε =
7
Overview Motivation for considering variance Mathematical description of variance: E ~N(0,Cε) Properties of Cε: - sphericity - independence E ~N(0,Cε) iid -Sources of violations: - 1st level: - temporal autocorrelation - unbalanced design - unequal within-subject variance - 2nd level: - correlated repeated measures (ex. n-back tasks) - unequal variances between groups How to use this knowledge to make proper statistical inference?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.