Download presentation
Presentation is loading. Please wait.
Published byGülistan Uyanık Modified over 5 years ago
1
Cryptanalysis of Tseng et al.’s authenticated encrption schemes
Source: Applied Mathematics and Computation 158(2004) 1-5 Authors: Qi Xie, Xiu Yuan Yu Speaker: Hao-Wen Huang Date: 2004/12/15
2
Outline Brief review of the Tseng et al.’s authenticated encrption scheme with message linkages Cryptanalysis and improvement Conclusion
3
§2. Tseng et al.’s scheme Initialization phase
Signature generation phase Message recovery phase
4
§2.1. System initialization phase
1> p and q are large primes s.t. p=2 p’ +1 and q =2 q’ +1,where p’ and q’ are still primes. 2>compute N= pq Let g be a generator of a multiplicative subgroup with order p’ q’ h() is a one-way hash function. Notation: green secret red public There are signer A (IDA) ,a specified verifier B(IDB) and one trusted center. 3>PA=gxA mod N and PB=gxB mod N, where XA and XB are w.r.t. A’s and B’s secret key. 4>PA, PB trusted center 5>center publishes YA=(PA-IDA) h(IDA) -1 and YB=(PB-IDB) h(IDB) -1 w.r.t. A’s and B’s public key.
5
§2.2. Signature generation phase
Message M={M1,M2,…,Mn} 1>r0=0 and select a random number k. 2>Compute t=(YB h(IDB) + IDB)k mod N 3>Compute ri=Mi*h(ri-1⊕ t) mod N for i=1,2,…..,n. 4>Compute s=k- XA r, where r = h(r1||r2||…||rn) 5>A----(r, s, r1, r2 ,…… ,rn) B
6
§2.3. Message recovery phase
1>B computes r’= h(r1||r2||…||rn) ,check r’ ?= r 2>solve t by following procedure: [step1] gk= gs(YA h(IDA) + IDA)r mod N [step2] t = (gk)xB mod N 3>Recover the message {M1,M2,…,Mn} Mi = ri *h(ri-1⊕ t)-1 mod N
7
§3. Cryptanalysis and improvement(1/3)
Case 1: If the specified verifier B substitutes XB , he can forge the signature for any message. Suppose B wants to forge the signature for message E={E1,E2,….,En} 1>Compute σi=Ei*h(σi-1⊕ t) mod N for i=1,2,…..,n and σ0=0 σ = h(σ1||σ2||…||σn) 2>slove x’B from rXB = σx’B then slove s’ from sXB = s’x’B 3>compute P’B = gx’B mond N,then B asks the trusted center publishes a new public key Y’ B.
8
§3. Cryptanalysis and improvement(2/3)
Case 1: If the specified verifier B substitutes XB , he can forge the signature for any message. 4>(σ, s’, σ1, σ2 ,…… , σn) is the valid signature blocks. pf: [gs’(YA h(IDA) + IDA)σ] x’B mod N = gs’ x’B (YA h(IDA) + IDA)σx’B mod N = gs xB (YA h(IDA) + IDA)r xB mod N = (gk)xB mod N = t mod N
9
§3. Cryptanalysis and improvement(3/3)
Case 2: If the signer A generates the signature with this scheme for two or more specified verifiers, thy can cooperate to forge the signature for any message. Improved approach: signature blocks (r, s, r1, r2 ,…… ,rn) ---- (r, s, gk,r1, r2 ,…… ,rn)
10
Conclusion Tseng et al.’s scheme is not secure and give out a small modification to improve their scheme.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.