Download presentation
Presentation is loading. Please wait.
1
Algorithms Sorting
2
The Sorting Problem Input: Output:
A sequence of n numbers a1, a2, , an Output: A permutation (reordering) a1’, a2’, , an’ of the input sequence such that a1’ ≤ a2’ ≤ · · · ≤ an’
3
Example 53 10 2 62 128 93 28 18 2 10 18 28 53 62 93 128
4
Sorting algorithms Insertion sort Selection sort Bubble sort Heap sort
Merge sort Quick sort Bucket sort Radix sort O( n2 ) O( n log n ) O( n )
5
Insertion Sort Idea: like sorting a hand of playing cards
Start with an empty left hand and the cards facing down on the table. Remove one card at a time from the table, and insert it into the correct position in the left hand compare it with each of the cards already in the hand, from right to left The cards held in the left hand are sorted these cards were originally the top cards of the pile on the table
6
Insertion Sort To insert 12, we need to make room for it by moving first 36 and then 24. 6 10 24 36 12
7
Insertion Sort 6 10 24 36 12
8
Insertion Sort 24 36 10 6 12
9
Insertion Sort 5 2 4 6 1 3 input array
at each iteration, the array is divided in two sub-arrays: left sub-array right sub-array unsorted sorted
10
Insertion Sort
11
Insertion sort example
12
An Example: Insertion Sort
30 10 40 20 i = j = key = A[j] = A[j+1] = 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
13
An Example: Insertion Sort
30 10 40 20 i = 2 j = 1 key = 10 A[j] = 30 A[j+1] = 10 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
14
An Example: Insertion Sort
30 30 40 20 i = 2 j = 1 key = 10 A[j] = 30 A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
15
An Example: Insertion Sort
30 30 40 20 i = 2 j = 1 key = 10 A[j] = 30 A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
16
An Example: Insertion Sort
30 30 40 20 i = 2 j = 0 key = 10 A[j] = A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
17
An Example: Insertion Sort
30 30 40 20 i = 2 j = 0 key = 10 A[j] = A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
18
An Example: Insertion Sort
10 30 40 20 i = 2 j = 0 key = 10 A[j] = A[j+1] = 10 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
19
An Example: Insertion Sort
10 30 40 20 i = 3 j = 0 key = 10 A[j] = A[j+1] = 10 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
20
An Example: Insertion Sort
10 30 40 20 i = 3 j = 0 key = 40 A[j] = A[j+1] = 10 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
21
An Example: Insertion Sort
10 30 40 20 i = 3 j = 0 key = 40 A[j] = A[j+1] = 10 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
22
An Example: Insertion Sort
10 30 40 20 i = 3 j = 2 key = 40 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
23
An Example: Insertion Sort
10 30 40 20 i = 3 j = 2 key = 40 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
24
An Example: Insertion Sort
10 30 40 20 i = 3 j = 2 key = 40 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
25
An Example: Insertion Sort
10 30 40 20 i = 4 j = 2 key = 40 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
26
An Example: Insertion Sort
10 30 40 20 i = 4 j = 2 key = 20 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
27
An Example: Insertion Sort
10 30 40 20 i = 4 j = 2 key = 20 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
28
An Example: Insertion Sort
10 30 40 20 i = 4 j = 3 key = 20 A[j] = 40 A[j+1] = 20 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
29
An Example: Insertion Sort
10 30 40 20 i = 4 j = 3 key = 20 A[j] = 40 A[j+1] = 20 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
30
An Example: Insertion Sort
10 30 40 40 i = 4 j = 3 key = 20 A[j] = 40 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
31
An Example: Insertion Sort
10 30 40 40 i = 4 j = 3 key = 20 A[j] = 40 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
32
An Example: Insertion Sort
10 30 40 40 i = 4 j = 3 key = 20 A[j] = 40 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
33
An Example: Insertion Sort
10 30 40 40 i = 4 j = 2 key = 20 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
34
An Example: Insertion Sort
10 30 40 40 i = 4 j = 2 key = 20 A[j] = 30 A[j+1] = 40 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
35
An Example: Insertion Sort
10 30 30 40 i = 4 j = 2 key = 20 A[j] = 30 A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
36
An Example: Insertion Sort
10 30 30 40 i = 4 j = 2 key = 20 A[j] = 30 A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
37
An Example: Insertion Sort
10 30 30 40 i = 4 j = 1 key = 20 A[j] = 10 A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
38
An Example: Insertion Sort
10 30 30 40 i = 4 j = 1 key = 20 A[j] = 10 A[j+1] = 30 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
39
An Example: Insertion Sort
10 20 30 40 i = 4 j = 1 key = 20 A[j] = 10 A[j+1] = 20 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } }
40
An Example: Insertion Sort
10 20 30 40 i = 4 j = 1 key = 20 A[j] = 10 A[j+1] = 20 1 2 3 4 InsertionSort(A, n) { for i = 2 to n { key = A[i] j = i - 1; while (j > 0) and (A[j] > key) { A[j+1] = A[j] j = j - 1 } A[j+1] = key } } Done!
41
Example of insertion sort
8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 2 3 4 6 8 9 done
42
Analysis of Insertion Sort
INSERTION-SORT(A) for j ← 2 to n do key ← A[ j ] Insert A[ j ] into the sorted sequence A[1 . . j -1] i ← j - 1 while i > 0 and A[i] > key do A[i + 1] ← A[i] i ← i – 1 A[i + 1] ← key cost times c n c2 n-1 0 n-1 c4 n-1 c5 c6 c7 c8 n-1 7 tj: # of times the while statement is executed at iteration j
43
Best Case Analysis The array is already sorted
tj = 1 T(n) = c1n + c2(n -1) + c4(n -1) + c5(n -1) + c8(n-1) = (c1 + c2 + c4 + c5 + c8)n + (c2 + c4 + c5 + c8) = an + b = (n) “while i > 0 and A[i] > key”
44
Worst Case Analysis The array is in reverse sorted order
Always A[i] > key in while loop test Have to compare key with all elements to the left of the j-th position compare with j-1 elements tj = j a quadratic function of n T(n) = (n2) order of growth in n2 “while i > 0 and A[i] > key” using we have:
45
Bubble Sort Idea: Easier to implement, but slower than Insertion sort
Repeatedly pass through the array Swaps adjacent elements that are out of order Easier to implement, but slower than Insertion sort i 1 2 3 n 1 3 2 9 6 4 8 j
46
Example 1 3 2 9 6 4 8 i = 1 j 3 2 9 6 4 8 1 i = 2 j 3 1 2 9 6 4 8 i = 1 j 3 9 6 4 8 2 1 i = 3 j 3 2 1 9 6 4 8 i = 1 j 9 6 4 8 3 2 1 i = 4 j 3 2 9 1 6 4 8 i = 1 j 9 6 8 4 3 2 1 i = 5 j 3 2 9 6 1 4 8 i = 1 j 9 8 6 4 3 2 1 i = 6 j 3 2 9 6 4 1 8 i = 1 j 9 8 6 4 3 2 1 i = 7 j 3 2 9 6 4 8 1 i = 1 j
47
Bubble Sort Alg.: BUBBLESORT(A) for i 1 to length[A]
do for j length[A] downto i + 1 do if A[j] < A[j -1] then exchange A[j] A[j-1] i 1 3 2 9 6 4 8 i = 1 j
48
Bubble-Sort Running Time
Alg.: BUBBLESORT(A) for i 1 to length[A] do for j length[A] downto i + 1 do if A[j] < A[j -1] then exchange A[j] A[j-1] c1 c2 c3 Comparisons: n2/2 c4 Exchanges: n2/2 T(n) = c1(n+1) + c2 c3 c4 = (n) + (c2 + c2 + c4) Thus,T(n) = (n2)
49
Selection Sort Idea: Disadvantage:
Find the smallest element in the array Exchange it with the element in the first position Find the second smallest element and exchange it with the element in the second position Continue until the array is sorted Disadvantage: Running time depends only slightly on the amount of order in the file
50
Example 1 3 2 9 6 4 8 8 6 9 4 3 2 1 8 3 2 9 6 4 1 8 9 6 4 3 2 1 8 3 4 9 6 2 1 9 8 6 4 3 2 1 8 6 4 9 3 2 1 9 8 6 4 3 2 1
51
Selection Sort Alg.: SELECTION-SORT(A) n ← length[A]
for j ← 1 to n - 1 do smallest ← j for i ← j + 1 to n do if A[i] < A[smallest] then smallest ← i exchange A[j] ↔ A[smallest] 1 3 2 9 6 4 8
52
Analysis of Selection Sort
Alg.: SELECTION-SORT(A) n ← length[A] for j ← 1 to n - 1 do smallest ← j for i ← j + 1 to n do if A[i] < A[smallest] then smallest ← i exchange A[j] ↔ A[smallest] cost times c c2 n c3 n-1 c4 c5 c6 c7 n-1 n2/2 comparisons n exchanges
53
Time complexity summary
Algorithm Best case Worst Insertion sort O( n ) O(n2 ) Selection sort Bubble sort
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.