Download presentation
Presentation is loading. Please wait.
Published byMaria Andreasen Modified over 5 years ago
1
Gear trains (Chapter 6) Change torque, speed Why we need gears
Example: engine of a containership Optimum operating speed of the engine about 400 RPM Optimum operating speed of the propeller about 100 RPM Need reduction gear
2
Connecting the main engine to the propeller through a reduction gear
Output flange Propeller, operates at about 100 RPM Engine Gear Engine operates at about 400 RPM
3
Types of gears
4
Gear box Stick shift Synchronizers
The gear box is in first gear, second gear
5
Gear Nomenclature (6.1)
6
Important definitions
Velocity ratio=mV=angular velocity of output gear/ angular velocity of input gear=pitch diameter of input gear/pitch diameter of output gear Torque ratio=mT=torque at output gear/torque at input gear mT=1/mV Gear ratio=mG=Ngear/Npinion, mG is almost always greater than one
7
If common normal were fixed then the velocity ratio would be constant.
Fundamental law of tooth gearing (6.2 and 6.3): velocity ratio must be constant as gears rotate Angular velocity ratio= ratio of distances of P from centers of rotation of input and output gear. If common normal were fixed then the velocity ratio would be constant. 2 T 3 3
8
If gear tooth profile is that of involute curve then fundamental law of gearing is satisfied
Involute curve: path generated by a tracing point on a cord as the cord is unwrapped from base cylinder
9
Generating gear teeth profile
Steps: Select base circles Bring common normal AB Draw involutes CD, EF P
10
Gear action Angular velocity of Gear 3 / angular Velocity of gear 2 =
O2P/O3P = constant
11
Fundamental law of gearing: The common normal of the tooth profiles at all points within the mesh must always pass through a fixed point on the line of the centers called pitch point. Then the gearset’s velocity ratio will be constant through the mesh and be equal to the ratio of the gear radii.
12
Pitch circle radius cos
Base circle radius = Pitch circle radius cos
13
Path of approach: BP=ua=[(r3+a)2-rb32]1/2-r3sin
Initial contact: B Final contact: C Path of approach: BP=ua=[(r3+a)2-rb32]1/2-r3sin Path of recess: PC=ur=[(r2+a)2-rb22]1/2-r2sin
14
Standard gears: American Association of Gear Manufacturers (AGMA) (6
Teeth of different gears have same profile as long as the angle of action and pitch is the same. Can use same tools to cut different gears. Faster and cheaper product. Follow standards unless there is a very good reasons not to do so.
15
Template for teeth of standard gears
16
AGMA Specifications Diametral pitch, pd=1, 1.25, 1.5,…,120
Addendum of pinion = addendum gear Observations The larger the pitch, the smaller the gear The larger the angle of action: the larger the difference between the base and pitch circles, the steeper the tooth profile, the smaller the transmitted force.
17
AGMA Standard Gear Specifications
Parameter Coarse pitch (pd=N/d<20) Fine pitch (pd=N/d>20) Pressure angle, 200 or 250 (not common) 200 Addendum, a 1/pd Dedendum, b 1.25/pd Working depth 2.00/pd Whole depth 2.25/pd 2.2/pd+0.002 Circular tooth thickness 1.571/pd (circular pitch/2) 1.571/pd Fillet radius 0.30/pd Not standardized Clearance 0.25/pd 0.25/pd+0.002 Minimum width at top land Circular pitch /pd
18
Min: 0.25/pd 1/pd /pd 1.25/pd 1.571/pd d=N/pd 0.25/pd 0.3/pd
19
Planetary (or Epicyclic) Gears (10.4)
Gears whose centers can move Used to achieve large speed reductions in compact space Can achieve different reduction ratios by holding different combinations of gears fixed Used in automatic transmissions of cars
20
Planetary gear
21
Components of a planetary gear
Carrier Input shaft Sun gear Ring gear
22
A variant of a planetary gear
Carrier
23
Planetary gears in automotive transmission
24
Velocity Analysis Of Planetary Gears (10.6, 10.7)
Two degrees of freedom Given the velocities of two gears (e.g. sun and carrier) find velocities of other gears Approach Start from gear whose speed is given Use equation gear = car+ gear/car
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.