Presentation is loading. Please wait.

Presentation is loading. Please wait.

The selection rules for vibration rotation transitions are

Similar presentations


Presentation on theme: "The selection rules for vibration rotation transitions are"— Presentation transcript:

1 The selection rules for vibration rotation transitions are
J’= 5 The selection rules for vibration rotation transitions are ∆v = ±1 ∆J = ±1 v” J”= 5

2 Excited Electronic State J’= 5
v’ = 0 R(3) R(2) R(1) R(0) v” = 0 J”= 5 R Branch

3 Excited Electronic State J’= 5
v’ = 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch

4 Excited Electronic State J’= 5
v’ = 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch

5 Excited Electronic State J’= 5
v’ = 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 Central section of the CN Band R Branch P Branch

6 Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II)

7 NASA Comet image Harry Kroto 2004

8

9

10 Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II)
Harry Kroto 2004

11 Harry Kroto 2004

12 Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II)
Harry Kroto 2004

13 Electronic Emission Spectrum
3883 Å Å Å CN Violet Electronic Emission Spectrum 0-0 R(0) P(1) R Branch P Branch cm-1 25750 cm-1 Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II)

14 J V’ J V”

15 J + 1 J V’ J – 1 J V”

16 J + 1 J B’ J (J+ 1) V’ J – 1 J B”J (J+ 1) V”

17 J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 J B”J (J+ 1) V”

18 J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J J B”J (J+ 1) V”

19 J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J J B”J (J+ 1) V”

20 J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J R(J) J B”J (J+ 1) V”

21 J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1) V”

22 J + 1 B’ (J+ 1)(J+2) J J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1)

23 J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1) V”

24 J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) R(J) P(J) J B”J (J+ 1) V”

25 J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J)
R(J) P(J) J B”J (J+ 1) V” Harry Kroto 2004

26 J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) B’ (4J + 2) R(J) P(J) J B”J (J+ 1) V”

27 J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) B’ (4J + 2) = 4B’(J + ½) R(J) P(J) J B”J (J+ 1) V”

28

29 Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch P(4)
P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

30 Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 Central section of the
P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 Central section of the CN Band R Branch P Branch Harry Kroto 2004

31 Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 Central section of the
P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 Central section of the CN Band R Branch P Branch Harry Kroto 2004

32 Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch P(4)
P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

33

34 Harry Kroto 2004

35 Harry Kroto 2004

36 Harry Kroto 2004

37 Harry Kroto 2004

38 Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame
v’= 0 C + N v”=3 2 1 r  Harry Kroto 2004

39 Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch
v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

40 J’+ 1 B’ (J+ 1)(J+2) R(J) P(1) B” J (J+ 1) J” R Branch If B” ~ B’
o + 2B J Harry Kroto 2004

41 Harry Kroto 2004

42 Harry Kroto 2004

43 Halley Harry Kroto 2004

44 Halley Harry Kroto 2004

45 Hale-Bopp Stromboli Observatory
Harry Kroto 2004

46 Harry Kroto 2004

47 Harry Kroto 2004

48 Align the spectrometer slit across the split tail
Charged species tail Align the spectrometer slit across the split tail Dust and neutral species tail Harry Kroto 2004

49 Align the spectrometer slit across the split tail
Harry Kroto 2004

50 Align the spectrometer slit across the split tail
Charged species tail Align the spectrometer slit across the split tail Harry Kroto 2004

51 Align the spectrometer slit across the split tail
Charged species tail Align the spectrometer slit across the split tail Dust and neutral species tail Harry Kroto 2004

52 Dust and neutral species tail
H2O+ NH2 Charged species tail Dust and neutral species tail Align the spectrometer slit across the split tail Harry Kroto 2004

53 Two serendipitous radio discoveries
Harry Kroto 2004

54 The Crab Nebula Norwegian Observatory
Harry Kroto 2004

55 Harry Kroto 2004

56 Harry Kroto 2004

57 Orion Constellation Harry Kroto 2004


Download ppt "The selection rules for vibration rotation transitions are"

Similar presentations


Ads by Google